UNIVERSITY OF ESWATINI

TITLE OF PAPER:

PROBABILITY THEORY II

COURSE CODE :

STA 212

TIME ALLOWED:

2 HOURS

INSTRUCTIONS : ANSWER ANY THREE QUESTIONS.

REQUIREMENTS:

SCIENTIFIC CALCULATOR AND

STATISTICAL TABLES.

Question 1

The continuous random variables X and Y have the joint probability density function

$$\frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(\gamma)}x^{\alpha-1}y^{\beta-1}(1-x-y)^{\gamma-1} \quad , 0 < x < 1, 0 < y < 1, 0 < x+y < 1$$

where $\alpha \geq 0,\, \beta \, \geq 0, \gamma \geq 0$ and Γ () is the gamma function.

Let r and s be non-negative integers. Show that the expected value of $X^{r}Y^{s}$ is a) $E(X^{r}Y^{s}) = \frac{\Gamma(\alpha + r)}{\Gamma(\alpha)} \cdot \frac{\Gamma(\beta + s)}{\Gamma(\beta)} \cdot \frac{\Gamma(\alpha + \beta + \gamma)}{\Gamma(\alpha + \beta + \gamma + r + s)}$

(8 Marks)

Hence determine the expected value and variance of X. b)

(6 Marks)

Find the correlation between X and Y. c)

(6 Marks)

Question 2

Two tennis players, A and B, are playing a match. Let X be the number of serves faster than 125 Km/h served by A in one of his service games and let Y be the number of these serves returned by B. The following probability model is proposed:

$$P(X = 0) = 0.4, P(X = 1) = 0.3, P(X = 2) = 0.2, and P(X = 3) = 0.1$$

The conditional distribution of Y (given that X = x > 0) is binomial with parameters x and 0.4, and P(Y = 0|X = 0) = 1. Assume that this model is correct when answering the following questions.

(a) Find the joint probability distribution of X and Y and display it in the form of a two-way

(7 Marks)

(b) Find the marginal distribution of Y and evaluate E(Y).

(4 Marks)

(c) Find Cov(X, Y).

(d) Use your joint probability distribution table to find the probability distribution of the number of serves faster than 125 km/h that are not returned by B in a game.

(5 Marks)

Question 3

The joint density of X and Y is given by

$$f(x,y) = c(3y - x)e^{-y}; \quad 0 \le x \le 3y, y \ge 0$$

a) Find the value of c making this a valid joint pdf.

(3 Marks)

b) Find the marginal densities of X and Y. Are X and Y independent?

(8 Marks)

c) Find E[Y].

(3 Marks)

d) Find the conditional density of Y given X = x.

(3 Marks)

e) Use the density calculated above to get E[Y|X = x].

(3 Marks)

Question 4

Suppose that X and Y are independent random variables with the same probability density function (pdf), f(x).

(a) Write down, without proof, a formula for the pdf of X + Y.

(2 Marks)

(b) Suppose that f(x) = x/2 for 0 < x < 2 (and f(x) = 0 elsewhere). Find the pdf of W = X + Y for 0 < w < 2 and for 2 < w < 4.

(12 Marks)

(c) Find the pdf of $V = (X - 1)^2$.

(6 Marks)

Question 5

A random vector (X, Y) has joint pdf, given by

$$f(x,y) = 2e^{-x-2y}$$
, $x > 0, y > 0$

a) Calculate E[XY].

(6Marks)

b) Calculate the covariance of X + Y and X - Y.

(14 Marks)