UNIVERSITY OF ESWATINI

SUPPLEMENTARY EXAMINATION PAPER 2018/2019

TITLE OF PAPER: DISTRIBUTION THEORY

COURSE CODE: ST301

TIME ALLOWED: TWO (2) HOURS

REQUIREMENTS: CALCULATOR

INSTRUCTIONS: ANSWER ANY THREE QUESTIONS

Question 1

[20 marks, 4+6+4+6]

(a) The joint density of (X, Y) is

$$f_{X,Y}(x,y) = egin{cases} x^k e^{-ky}, & 0 < x < y < \infty, \\ 0, & ext{otherwise}. \end{cases}$$

- (i) Verify that this is a valid density when k=1.
- (ii) Find $f_X(x)$, $f_Y(y)$ and $f_{Y|X}(y|x)$, representing the marginal density of X, Y and the conditional density of Y given X=x respectively.
- (b) Let $X \sim \text{Bernuolli}(p)$, that is, $P(X = x) = p^x (1-p)^{1-x}$, x = 0, 1. Find the moment generating function of X. Let Y = NX, when N Poisson (μ) with

$$P(N=n) = \frac{\mu^n e^{-\mu}}{n!}$$
 $n = 0, 1, \dots,$

and N is independent of X. Derive the moment generating function of Y.

Question 2

[20 marks, 3+3+4+2+4+4]

(a) You have a coin and two dice. The coin is biased and comes up head with probability p and tail with probability q=1-p. Dice 1 (D_1) is a fair dice. Dice 2 (D_2) is a biased dice with

$$P(D_2 = 1) = P(D_2 = 6) = \frac{1}{12}$$

$$P(D_2 = 2) = P(D_2 = 5) = \frac{1}{6}$$

$$P(D_2 = 3) = P(D_2 = 4) = \frac{1}{4}$$

You flip the biased coin. If it comes up a head, you throw Dice 1. Otherwise you throw Dice 2. Let X denote the result of the dice throw.

- (i) What is the probability that the outcome of the throw is 6?
- (ii) Given the outcome is 6, what is the probability that the dice thrown was dice 1?
- (iii) After the first throw of dice, you throw the dice you have just thrown again. What is the probability that the two throws add up to 3?
- (b) Let Z be a random variable with density

$$f_Z(z) = \frac{1}{2}e^{-|z|}, \qquad \text{ for } 0 < z < \infty.$$

- (i) Show that f_Z is a valid density.
- (ii) Find the moment generating function of Z and specify the interval where the MGF is well-defined.
- (iii) By considering the cumulant generating function or otherwise, evaluate E(Z) and Var(Z).

Question 3

[20 marks, 3+4+3+4+6]

(a) Without a vaccine, the probability of contracting disease D_1 is 0.2, while for disease D_2 it is 0.05. An individual will not contract both diseases at the same time.

Vaccine A lowers the probability of contracting disease D_1 to 0.1, and disease D_2 to 0.02. Vaccine B lowers these probabilities to 0.05 and 0.04, respectively.

The proportion of the population who have not received either vaccine is 0.1, the proportion who have been vaccinated by vaccine A is 0.4, and the proportion vaccinated by vaccine B is 0.5.

- (i) What is the probability that a particular patient has developed disease D_1 ?
- (ii) Given a patient has developed disease D_1 , what is the probability that he/she has been vaccinated with either vaccine A or B?
- (b) Without a vaccine, the death rate is 0.1 for a patient with disease D_1 , and 0.5 for a patient with disease D_2 . If a patient receives vaccine A and still develops a disease, the death rate is 0.06 for disease D_1 and 0.1 for disease D_2 . If a patient receives vaccine B and still develops a disease, the corresponding death rates are 0.01 and 0.2, respectively.
 - (i) Show that for any events A, B and C, we have

$$P(A \cap B \cap C) = P(C|A \cap B)P(B|A)P(A)$$

- (ii) Find the probability that a particular individual satisfies the conditions that he/she is not vaccinated, develops disease D_2 , and dies eventually.
- (iii) Given that a patient developed disease D_2 and died, find the probability that the patient has not been vaccinated.

Question 4

[20 marks, 5+5+5+5]

- (a) Let N(t) be the number of telephone calls at an exchange in the interval (0,t] We suppose that $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda = 10$ per hour. Calculate the probability that no calls will be received during each of two consecutive 15-minute periods.
- (b) Let N(t) be the number of failures in the interval (0,t]. We suppose that $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda = 1$ per week. Calculate the probability that
 - (i) the system operates without failure during two consecutive weeks,
 - (ii) the system will have exactly two failures during a given week, knowing that it operated without failure during the previous two weeks,
 - (iii) less than two weeks elapse before the third failure occurs

Question 5

[20 marks, 6+6+8]

(a) The annual number of hurricanes forming in the Atlantic basin has a Poisson distribution with parameter λ . Each hurricane that forms has probability p of making landfall independent of all other hurricanes. Let X be the number of hurricanes that form in the basin and Y be the number that make landfall. Find:

- (i) E(Y),
- (ii) Corr(X, Y).
- (b) Let X be such that the distribution of X given Y=y is Poisson, parameter y. Let $Y\sim \mathsf{Poisson}(\mu)$. Show that

$$G_{X+Y}(s) = \exp\{\mu(se^{s-1} - 1)\}$$