UNIVERSITY OF ESWATINI

DEPARTMENT OF STATISTICS AND DEMOGRAPHY

RESIT EXAMINATION 2019

TITLE OF PAPER

: INDIRECT TECHNIQUES OF DEMOGRAPHIC

ESTIMATION I

COURSE CODE

: DEM 313

TIME ALLOWED

: TWO (2) HOURS

INSTRUCTIONS

: ANSWER ALL THREE QUESTIONS

: SHOW ALL YOUR FORMULAE AND WORKINGS

REQUIREMENTS

: CALCULATOR

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

Question 1 [20 Marks]

- a. Explain the need and importance of indirect techniques of demographic estimation? [12]
- b. Evaluation of fertility data on recent births and children ever born is vital beforehand detailed analysis. As a demographer tasked to evaluate recent census data collected in your country explain possible errors that you may encounter based on the information regarding:
 - i. Current or period fertility; and [4]
 - ii. Parity or lifetime fertility. [4]

Question 2 [20 Marks]

Census data in Table E2 was obtained on children ever born (CEB) and births in the last 12 months for women in country X in 2002. Based on these data, an attempt was made to estimate fertility using the Trussell variant of Brass P/F ratio method. The results are presented in Table E2 using standard symbols (in Manual X of United Nations). You may use in your calculations the relevant formulae and Table A1 coefficients in the appendix. The reported population for country X was 71,315,944.

Table E2

Table E2												
i	Age group	W(i)	CEB(i)	B(i)	P(i)	f(i)	Φ(i)	F(i)	w(i)	f+(i)	P(i)/F(i)	f*(i)
1	15-19	3014706	1160919	320406			0.5314	0.237	0.087	0.1262		
2	20-24	2653155	4901382	609269			44					
3	25-29	2607009	9085852	561494								
4	30-34	2015663	9910256	367833			*******	3.323				
5	35-39	1771680	10384001	237297				4.094	0.205	0.1310		
6	40-44	1479575	9164329	95357				4.579	0.167	0.0568		
7	45-49	1135129	6905673	38125			4.8288	4.790	~~~	0.0280		

- a) Calculate the values for columns P(i) to f+(i) in Table E2 as indicated by the blank spaces.
- b) Calculate P/F ratios for all age groups. [2]
- c) Interpret the meaning of the P/F ratios you obtained above. [2]
- d) Based on the values you obtained in (b), calculate the adjustment factor, k and give a reason on the method you have chosen. [2]
- e) Calculate the adjusted fertility rate, f*(i). [2]
- f) Using the results obtained above and data in Table E2, estimate the reported and adjusted total fertility rate for country X, and compare the results. [3]
- g) State your assumptions for using the Brass P/F ratio method to estimate fertility. [4]

Question 3			
a.	Describe the rationale of Relational Gompertz Model of fertility schedule.	[5]	
b،	What are the data requirements for this method?	[4]	
c.	State any three (3) assumptions of the method.	[6]	
d.	Explain the meaning of the parameters α and β in this relational fertility model.	[5]	

APPENDIX

Table A1: Table Coefficients for F(i) and f+(i)

 	c(i)	x(i)	y(i)	z (i)
 		0.031	2.287	0.114
		. 0.068	0.999	-0.233
		0.094	1.219	-0.977
 -	*	0.12	1.139	-1.531
=	=	0.162	1.739	-0.3592
		0.27	3.454	-21.497
a(i) 2.531 3.321 3.265 3.442 3.518 3.862 3.828	2.531 -0.188 3.321 -0.754 3.265 -0.627 3.442 -0.563 3.518 -0.763 3.862 -0.2481	a(i) b(i) c(i) 2.531 -0.188 0.0024 3.321 -0.754 0.0161 3.265 -0.627 0.0145 3.442 -0.563 0.0029 3.518 -0.763 0.0006 3.862 -0.2481 -0.0001	a(i) b(i) c(i) x(i) 2.531 -0.188 0.0024 0.031 3.321 -0.754 0.0161 0.068 3.265 -0.627 0.0145 0.094 3.442 -0.563 0.0029 0.12 3.518 -0.763 0.0006 0.162 3.862 -0.2481 -0.0001 0.27	a(i) b(i) c(i) x(i) y(i) 2.531 -0.188 0.0024 0.031 2.287 3.321 -0.754 0.0161 0.068 0.999 3.265 -0.627 0.0145 0.094 1.219 3.442 -0.563 0.0029 0.12 1.139 3.518 -0.763 0.0006 0.162 1.739 3.862 -0.2481 -0.0001 0.27 3.454

$$F(7) = \phi(6) + a(7)f(7) + b(7)f(6) + c(7)\phi(7)$$

$$f^{+}(i) = (1 - w(i-1))f(i) + w(i)f(i+1)$$

$$w(i) = x(i) + y(i)\frac{f(i)}{\phi(7)} + z(i)\frac{f(i+1)}{\phi(7)}$$

$$F(i) = \phi(i-1) + a(i)f(i) + b(i)f(i+1) + c(i)\phi(7)$$

$$f^{+}(7) = (1 - w(6))f(7)$$