UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER 2011

TITLE OF PAPER : DISTRIBUTION THEORY

COURSE CODE : ST301

TIME ALLOWED : TWO (2) HOURS

REQUIREMENTS : CALCULATOR AND STATISTICAL TABLES

INSTRUCTIONS : ANSWER ANY THREE QUESTIONS

Question 1

[20 marks, 6+6+8]

(a) For each of the joint pdf's below, determine the conditional density function of Y given X = x for all x such that the function is defined.

(i)
$$f(x,y) = \begin{cases} \lambda^2 e^{-\lambda y} & 0 \le x \le y \\ 0 & \text{elsewhere} \end{cases}$$

(i)
$$f(x,y) = \begin{cases} \lambda^2 e^{-\lambda y} & 0 \le x \le y \\ 0 & \text{elsewhere} \end{cases}$$
 (ii)
$$f(x,y) = \begin{cases} x e^{-x(y+1)} & x,y \ge 0 \\ 0 & \text{elsewhere} \end{cases}$$

(b) Breakdowns in a factory occur with Poisson rate λ . The time T to effect a repair (assume T is independent of the breakdown process) has the distribution

$$\mathbb{P}(T=j) = q^{j-1}p$$
 $j = 1, 2, \dots$ 0

Calculate the expected number of breakdowns while one repair is being effected.

Question 2

[20 marks, 6+8+6]

(a) Consider the following suggested model for the lifetime of an electrical component. Each component has a quality factor q; and the distribution of the lifetime of the component has pdf

$$f(x) = \begin{cases} qe^{-qx} & x > 0\\ 0 & \text{elsewhere} \end{cases}$$

where q > 0. The value of q varies between components. The quality factor of a randomly chosen component has pdf

$$f(q) = \begin{cases} \beta e^{-\beta q} & q > 0\\ 0 & \text{elsewhere} \end{cases}$$

where $\beta > 0$ is a parameter. Find the pdf of the lifetime of a randomly chosen component.

(b) X has pdf

$$f(x) = \begin{cases} \frac{kx^3}{(1+2x)^6} & x > 0\\ 0 & \text{elsewhere} \end{cases}$$

Find the pdf of $Y = \frac{2X}{1+2X}$ and identify the constant k.

(c) X_1 , X_2 and X_3 are independent, each uniformly distributed on the interval (0,1). Find $\mathbb{P}(X_1 <$ $X_2 < X_3$).

Question 3

[20 marks, 12+8]

(a) The count random variables X and Y are independent and Poisson distributed with parameters λ and μ respectively, i.e.

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \qquad P(Y = k) = \frac{\mu^k e^{-\mu}}{k!}, \qquad k = 0, 1, 2, \dots, \infty.$$

Show that Z = X + Y is Poisson distributed with parameter $(\lambda + \mu)$. Show also that the conditional distribution of X, given that X + Y = n, is binomial, and determine the parameters.

(b) It is said that a random variable X has a Pareto distribution with parameters x_0 and α ($x_0 > 0$ and $\alpha > 0$) if X has a continuous distribution for which the p.d.f is

$$f_X(x) = \begin{cases} \frac{\alpha x_0^{\alpha}}{x^{\alpha+1}}, & x \ge x_0, \\ 0, & x \le x_0. \end{cases}$$

Show that if X has this Pareto distribution, then the random variable $\log(X/x_0)$ has an exponential distribution with parameter α .

Question 4

[20 marks, 6+5+5+4]

(a) The count random variable X has probability generating function (PGF)

$$G_X(s) = \frac{1 - s^{M+1}}{(M+1)(1-s)}$$

where M is a positive integer. Find the probability function of X.

(b) Consider random variables X and Y with joint density function

$$f_{X,Y}(x,y) = egin{cases} k(3x-2) & ext{for } 0 < y < x < 2, \\ 0 & ext{otherwise}. \end{cases}$$

- (i) Find k.
- (ii) Find $f_X(x)$. Hence evaluate E(X).
- (iii) Evaluate P(2Y > X).

Question 5

[20 marks, 8+4+8]

(a) A measurement, X, has probability density function given by

$$f(x) = \frac{\lambda x^{\lambda - 1}}{\theta^{\lambda}} \exp(-(x/\theta)^{\lambda})$$
 $x > 0$

where λ and θ are positive parameters. Show that the 100p percentile of this distribution is $\theta(-\log(1-p))^{1/\lambda}$. Hence use the respective estimates 4.425 and 5.575 of the median and upper quartile to deduce that the values of λ and θ can be estimated as approximately 3 and 5 respectively.

(b) In an accelerated life experiment, the times to failure, in hours, of a certain type of device have probability density function

$$f(x) = \nu^2 x e^{-\nu x}$$

for x > 0. Show that the mean time to failure is $2/\nu$.

(c) The continuous random variables X and Y have joint probability density function f(x,y)=kxy if 0 < x < y < 1, with f(x,y)=0 elsewhere, where k is a constant. Evaluate k, and find the marginal probability densities of X and Y. Say, with a reason, whether or not X and Y are independent.

Appendix

• A continuous non-negative random variable X is distributed $Gamma(\alpha, \lambda)$, with p.d.f.

$$f(x) = \frac{\lambda^{\alpha} x^{\alpha - 1} \exp(-\lambda x)}{\Gamma(\alpha)}, \quad x \ge 0; \quad \alpha, \lambda > 0$$

• The 2-parameter Weibull distribution has the c.d.f.

$$F(x) = 1 - \exp\left\{-\left(\frac{x}{b}\right)^{c}\right\}, \qquad x \ge 0.$$

• The function

$$\Gamma(p) = \int_0^\infty t^{p-1} e^{-t} dt, \quad p > 0,$$

has the properties

$$\Gamma(p+1)=p\Gamma(p): \qquad \Gamma(1/2)=\sqrt{\pi}: \qquad \Gamma(n+1)=n!, \qquad \text{n integer } \geq 0.$$