DEPARTMENT OF STATISTICS AND DEMOGRAPHY

MAIN EXAMINATION, 2010/11

COURSE TITLE:

MATHETHEMATICS FOR STATISTICS

COURSE CODE:

ST 202

TIME ALLOWED:

TWO (2) HOURS

INSTRUCTION:

ANSWER ANY THREE QUESTIONS

ALL QUESTIONS CARRY EQUAL MARKS (20 MARKS)

SPECIAL REQUIREMENTS: SCIENTIFIC CALCULATORS

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GRANTED BY THE **INVIGILATOR**

Question 1

The likelihood function of β , given a sample of size n=1 from a Gamma (α, β) distribution (with $\alpha = 2$), is written as

$$L(\beta) = \beta^2 x e^{-\beta x} .$$

- (a) What value of β (in terms of x) will maximize $L(\beta)$? (10 marks) [Hint: Keep in mind that the differentiation of $\hat{L}(\beta)$ is with respect to β and that x should be treated as a constant as far as β is concerned.]
- (b) The natural logarithm of the likelihood function is called the log-likelihood function. What is the log-likelihood function of β for the Gamma (α, β) density? (Simplify the logarithm as much as possible.)

(5 marks)

 $ln[L(\beta)] = ?$

(c) Now, differentiate $\ln[L(\beta)]$ with respect to β to show that the same value of β that maximizes $L(\beta)$ in part (a) also maximizes $\ln[L(\beta)]$. (5 marks)

Question 2

(a) A national toy distributor determines the cost and revenue models for one of its games as:

$$C = 2.4x - 0.0002x^2, 0 \le x \le 6000$$

 $R = 7.2x - 0.001x^2, 0 \le x \le 6000$

Determine the interval on which the profit function is increasing.

(6 marks)

- (b) Simplify the logarithmic expressions:
 - (i) $3 \ln 2 2 \ln(x 1)$,

(ii)
$$2 \ln x + \ln y - 3 \ln(z+4)$$
,

(3 marks)

- (c) Find the derivative of the functions:
 - (i) $y = e^{-3x} + 5$,

(ii)
$$y = \ln \frac{5x}{x+2},$$

(4 marks)

(c) Find the second derivative of the function

$$f(x) = x \ln \sqrt{x} + 2x$$
 (3 marks)

(d) Find the first partial derivatives of $f(x, y) = xe^{xy}$, and evaluate it at the point (1, ln2) (4 marks)

Question 3

(a) Evaluate the function:

$$\int xe^{x^2}dx$$

(3 marks)

(b)Let x and y be two continuous random variables having the joint probability density function given by:

$$f(x,y) = \begin{cases} 24xy, 0 < x < 1, 0 < y < 1, x + y < 1\\ 0, elsewhere \end{cases},$$
Find $P(x > \frac{1}{2}, y < \frac{3}{4})$, (5 marks)

(c) If X is Gamma distributed with $\alpha=2$ and $\beta=3$, the probability density function for x will be given by: $f(x) = \frac{1}{9}xe^{-x/3}, for x > 0$

(i)Determine the expected value and standard deviation of the distribution.

(8 marks)

(ii) Find P(x > 4)

(4 marks)

Question 4

(a) Find A^{-1} for the following matrix:

$$A = \begin{bmatrix} 1 & 0 & 4 \\ 4 & 1 & -2 \\ 3 & 1 & -1 \end{bmatrix}$$
 (7 marks)

(b) Solve the following linear system of equations using the method of determinants:

$$x + 4z = 4$$

 $4x + y - 2z = 0$
 $3x + y - z = 2$ (7 marks)

(c) Suppose
$$x = \begin{bmatrix} 2 \\ 0 \\ -4 \end{bmatrix}$$
 and $y = \begin{bmatrix} 0 \\ -1 \\ -3 \end{bmatrix}$

Use vector algebra to find the least squares regression line through the set of points determined by vectors x and y.

(6 marks)

Question 5

Page 4 of 4

(a) Find eigenvalues and eigenvectors of matrix $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$

(10 marks)

(b) Solve the following system of equations using the Gauss-Jordan elimination method:

$$x + y + 2z = 9$$

 $2x + 4y - 3z = 1$
 $3x + 6y - 5z = 0$

(10 marks)