UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2008/9

B.A.S.S. II

TITLE OF PAPER

MATHEMATICS FOR STATISTICIANS

COURSE NUMBER

ST 202

TIME ALLOWED

TWO (2) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

FIVE QUESTIONS.

2. ANSWER ANY THREE QUESTIONS

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- 1. (a) Given that $f(x,y) = x \ln(x+y)$, find f_x , f_y , f_{xx} , f_{xy} and f_{yy} . [8]
 - (b) Find the derivatives $\frac{dy}{dx}$ of the following functions

i.
$$x^3 + y^3 + 3xy^2 = 3$$
 [4]

ii.
$$y = \cos^{-1}(2x^2)$$
 [4]

iii.
$$y=x^{\frac{1}{x}}$$

QUESTION 2

(a) Use Newton's method with four (4) iterations and five decimal places to find the root of

$$f(x) = x^3 - x + 1$$

given that
$$x_0 = -1$$
 [10]

(b) Find all the local maximum, minimum and saddle points of the following function

$$f(x,y) = 2x^3 - 6xy + 3y^2 + 6x - 18y$$

[10]

QUESTION 3

 (a) Use Gauss-Jordan reduction (elementary row operations) method to find the inverse of the following matrix

$$\left(\begin{array}{cccc}
1 & 3 & 3 \\
1 & 4 & 3 \\
2 & 7 & 7
\end{array}\right)$$

[10]

(b) Find eigenvalues and eigenvectors for the matrix $A = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$ [10]

QUESTION 4

4. (a) Evaluate the following integrals

i.
$$\int \tan^{-1} x \ dx$$
 [5]

ii.
$$\int \frac{x^2 - 3x + 2}{x(x+1)(x-3)} dx$$
 [5]

iii.
$$\int_0^2 \int_{-1}^1 (1 - 6x^2 y) dx dy$$
 [5]

(b) Evaluate the following limits

i.
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$
 [3]

ii.
$$\lim_{x \to \infty} \frac{x^2 + 3x - 6}{2x^2 - x + 9}$$
 [2]

QUESTION 5

5. (a) Use Gauss-Jordan method to solve the system

$$x + 2y + z = 1$$

$$x - y - z = 0$$

$$2x + y + z = 3$$

[10]

(b) Transform the following determinant to triangular form, and evaluate the determinant:

[10]

END OF EXAMINATION