UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2009

TITLE OF PAPER: DEMOGRAPHIC METHODS

CORSE NUMBER: DEM 202

TIME ALLOWED: 3 HOURS

INSTRUCTIONS: ANSWER <u>ANY FOUR</u> QUESTIONS. ALL QUESTIONS ARE WORTH 25 MARKS EACH.

REQUIREMENTS: CALCULATOR

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Question 1

a) The mid-year 1977 female population of Malawi is shown by age group, together with the number of children born to them during 1977.

Age	Population	Births	
15-19	280,018	36,853	
20-24	254,149	71,119	
25-29	233,239	64,160	
30-34	161,081	38,803	
35-39	144,989	28,348	
40-44	109,000	13,708	
45-49	113,341	7,830	

On the basis of the above data, calculate:

- (i) the age specific fertility rates and interpret one of them (5)
- (ii) the gross reproduction rate and interpret it (5)
- (iii) the mean age of child bearing (2)
- b) Distinguish between rates and ratios. (4)
- c) A number of rates which are commonly called 'rates' in demography are strictly proportions or ratios. Give two examples of such rates and explain why they are not rates. (4)
- d) Describe as clearly as you can the cohort method for adjusting the conventional infant mortality rate, giving the relevant formula as well. (5)

Question 2

- a) Define a parity progression ratio and present a formula for its calculation (3)
- b) Use the information in Tables 2 and 3 to answer the following questions:
 - I. Calculate the parity progression ratios. (8)
 - II. Calculate the total fertility rate using the above calculated parity progression ratios. (4)
 - III. Also calculate the total fertility rate using the age-specific fertility rate approach. (2)

- IV. If as a result of a family planning campaign, the age-specific fertility rate for the age group 35-39 were reduced by 40%, by what percentage would the fertility rate be reduced? (3)
- c) A certain hypothetical population has the following parity progression ratios:

 $P_1 = 0.89$

 $P_2 = 0.85$

 $P_3 = 0.81$

Out of 1,000 women, how many remain childless and how many have exactly one child? (5)

Table 2: Distribution of women by Number of Children Ever Born, Swaziland, 1976

Number of CEB	Number of Women	
0	35,217	
1	15,332	
2	13,565	
3	12,387	
4	11,770	
5	11,285	
6	10,029	
7	8,733	
8	7,362	
9+	5,413	

Table 3: Age Specific Fertility Rates, Swaziland, 1976

Age	ASFR	
15-19	0.169	
20-24	0.318	
25-29	0.311	
30-34	0.264	
35-39	0.198	
40-44	0.096	
45-49	0.014	

Question 3

- a) It is often said that women generally live longer than men. Discuss this statement.

 (6)
- b) Why is in necessary to standardize rates? (3)
- c) Using the table below, compare and discuss the death rates for the two populations using the appropriate method of standardization. (16)

Population and Deaths (in thousands) by age, Countries A and B

Age group 0-19	Co	untry A	Country B		
	Population	Deaths	Population	Deaths	
	6418.0	30.6	1415.2	1.5	
20-39	2736.1	4.8	1505.5	2.1	
40-59	1220.6	4.7	1062.2	7.4	
60+	588.0	8.0	742.3	34.1	
Total	10962.7	48.1	4752.2	45.1	

Question 4

- a) A net nuptiality table is a type of double decrement life table. Which are the two forces of decrement, and which state is being decremented? (3)
- b) In a net nuptiality table, what does l_x represent? (2)
- c) Briefly describe how you would compute the average age at first marriage, mentioning the data that are needed. (5)
- d) Populations that have a low age at marriage tend to have relatively higher levels of fertility. Discuss this statement. (9)
- e) Provide the formula for computing the singulate mean age at marriage, defining all the components of the formula. (6)

Question 5

- a) Distinguish between generation and abridged life tables. (5)
- a. Using the data in Table 4, construct an abridged life table for the Male population.(20)

TABLE 4: Male Population and Deaths by Age, England and Wales, 1982

Age	Population	Deaths	
0-4	1,571,400	4,566	
5-9	1,557,600	391	
10-14	1,947,500	546	
15-19	2,121,200	1,669	
20-24	1,942,800	1,668	
25-29	1,708,200	1,409	
30-34	1,764,700	1,735	
35-39	1,734,500	2,246	
40-44	1,417,200	3,280	
45-49	1,368,500	5,647	
50-54	1,381,000	10,497	
55-59	1,382, 000	18,820	
60-64	1,277,400	27,701	
65-69	1,088,600	39,171	
70-74	900,100	51,908	
75-79	578,400	52,096	
80-84	274,500	37,844	
85-89	97,200	19,875	
90+	32,700	9,119	

Question 6

- a) Differentiate as clearly as possible, between the following pairs of concepts:
 - i. Marriage and nuptiality. (3)
 - ii. Divorce and legal separation. (2)
- b) Fill in the missing values numbered (i) to (vi) in Table 5, showing clearly the formulae used for each answer and show your calculations clearly. (12)

TABLE 5: Gross Nuptiality Table for a Hypothetical Population

Age	nM _x	_n N _x	S _x	_n H _x	_n E _x	nLx	T _x	Px	ex
15-19	0.0630	0.27215	100000	27215	62071	431962	175029 2	0.6207	17.5
20-24	0.0794	0.33120	72785	24106	34856	(iv)	(v)	0.4789	18.1
25-29	0.0290	0.13534	48679	6588	10750	226925	101467 0	0.2208	(vi)
30-34	0.0100	(i)	42091	2048	(iii)	205335	787745	0.0989	18.7
35-39	0.0050	0.02492	40043	998	2114	197720	582410	0.0528	14.5
40-44	0.0031	0.01522	(ii)	594	1116	193740	384690	0.0286	9.9
45-49	0.0027	0.01357	38451	522	522	190950	190950	0.0136	5.0
50-54	0.0010		37929		 				

c) Give the formula for projecting male births in a 5-year period using the female age distribution, female age specific fertility rates and male and female life tables.
(8)