UNIVERSITY OF SWAZILAND

MAIN EXAMINATION 2009

TITLE OF PAPER: DEMOGRAPHIC METHODS

CORSE NUMBER: DEM 202

TIME ALLOWED: 3 HOURS

INSTRUCTIONS: ANSWER $\underline{\text{QUESTION 1}}$ AND $\underline{\text{ANY THREE}}$ QUESTIONS. ALL QUESTIONS ARE WORTH 25 MARKS EACH.

REQUIREMENTS: CALCULATOR

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

TABLE 1: Population Distribution of a Coastal Region by Age and National Census Survival Ratios between 1996 and 2001.

Age in 1996	Population 1996	Age in 2001	Population 2001	Survival ratios
0-4	95456	5-9	103452	0.99737
5-9	99170	10-14	104886	0.99849
10-14	98415	15-19	101045	0.99672
15-19	93957	20-24	101544	0.99207
20-24	84342	25-29	93220	0.99259
25-29	83598	30-34	92753	0.99350
30-34	70191	35-39	77853	0.99301
35-39	59982	40-44	64334	0.98956
40-44	53313	45-49	55713	0.98223
45-49	55775	50-54	57715	0.96979
50-54	54857	55-59	56099	0.95060
55-59	46881	60-64	48363	0.92191
60+	128674	65+	103715	0.72308

Additional information: Sex Ratio at Birth = 1.04

b) What data sources are needed to implement a cohort component projection for your country of residence? (5)

Question 3

- i) Distinguish between the following measures of fertility and show how each is calculated:
 - a) Child Woman Ratio and General Fertility Rate (4)
 - b) Total fertility rate (2)
 - c) Gross reproduction rate and Net reproduction rate (4)
 - ii) Using the statistics in the table below, calculate:
 - a. ASFRs for ages 15-19 to 45-49 (7)
 - b. TFR (2)
 - c. Gross Reproduction rate (3))
 - d. Net Reproduction rate (3)

Table 2: Statistics for Fertility Calculation, Australia, 1996

Age	Total births by age of mother	Female births by age of mother	Total women	_n L _x /l _o
15-19	12509	5988	621542	0.99175
20-24	44837	21807	694273	0.98985
25-29	82782	40278	709746	0.98792
30-34	76435	37227	720453	0.98566
35-39	31864	15359	727555	0.98261
40-44	5113	2470	672182	0.97826
45-49	128	61	640985	0.97152

Question 4

- i) Distinguish between an abridged life table and a complete life table. (5)
- ii) Define the following life table functions:
- a) $_{n}q_{x}(2)$
- b) e_0 (2)
- c) $_{n}M_{x}(2)$
- d) $_{n}L_{x}(2)$
- e) $T_x(2)$
- iii) Is a stationary population also a stable population? Explain your answer. (5)
- iv) At the start of the 21st century, China had an estimated R₀ of 0.81297 and an R₁ of 23.528. Calculate the population's intrinsic rate of natural increase. (5)

Question 5

- a) What are the guidelines for choosing a standard population in standardization? (2)
- b) Using the data below, compare and discuss death rates for Country A and B using the appropriate method of standardization. (15)

Table 3: Age distribution and age-specific mortality for the UK and Kuwait, 1996

	United Kingd	om	Kuwait	
Age group	Population	Deaths	Population	Deaths
0-14	11 358 354	7225	512 179	726
15-29	11 902 658	7571	495 541	317
30-44	12 935 390	16 671	538 018	491
45-59	10 582 022	53 998	166 343	678 ·
60-69	5 418 489	100 896	29 744	587
70+	6 604 552	452 536	12 156	1016

- c) Why is it necessary to decompose the difference between two demographic rates? (2)
- d) Present a formula for computing the 'age composition effect' when decomposing the difference between two populations' crude death rates and define the components of the formula.(6)

Question 6

a) Using the data given below, calculate the singulate mean age at marriage for females in Mali and England. Interpret your results.(13)

Table 5: Proportions of Females Never Married, Mali and England, 1981

Age group	% single Mali	% single England	
15-19	69.5	97.96	
20-24	13.4	63.22	
25-29	1.1	25.74	
30-34	0.7	13.83	
35-39	0.0	11.09	
40-44	0.0	10.82	
45-49	0.0	9.95	
50-54	0.0	8.74	

b) Using Table 4, construct a gross nuptiality table. (14)

Table 4: Number of Women and First Marriages by Age

Age	No. of Women (in	No. of first marriages (in
4 1 A	thousands)	thousands)
15-19	311.1	19.6
20-24	228.0	18.1
25-29	155.0	4.5
30-34	140.4	1.4
35-39	138.7	0.7
40-44	130.4	0.4
45-49	109.8	0.3
50-54	98.7	0.1