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QUESTION ONE

Suppose x, and x, are independent random
variables with probability density function s (x).x < 4
andy, (x,).x, A; respectively. Let r-v,(x,)

andy, =u,(x,). For which x =s,(») and x,=«,(,) be
the inverses of the transformation so that 5 <&
andy, <s,. If 4=4+4, is mapped onto 5-5+5, . Show
that » and x, are independent random variables.

If X is a standard normal variable, find the
probability density function of r-x2.

QUESTION TWO

Let x.i=12....» be independent EXP (B) random

variables. Show thaty =3 x, - G (n.5).



. Suppose x, -cama;h and x, -cam(a,, use the

moment generation technique to find the distribution
of r=x,+x,.
Let x~UNIF (0, 1), given that the probability density

function of X is s, (x)=1,0<x<1. Find the distribution

function of Y=-2Inx.

QUESTION THREE

The probability density function of a random

variable X is given as s()=e?,0<x<1 and

zero else -where. Find (i) the constant ¢
(i) F(x) and evaluate P(X<1/2).

Let the cumulative distribution function of X be

(:Jﬂ)
-
1520



(i) Find the probability density function of X

(i)  Evaluate r(x>1/x<3)

QUESTION FOUR

(@) (i)  Define the K-th moment of random variable X.
(i)  Find the k-th moment bf a random variable

X whose probability density function is given

Her20<x<30

as f,(x)={

.
0,0therwise

(b) Given that g(x,0)=0 and that

D,,[g(x,w)]=—Ag(x,w)+1g(x—1,w) , for )(:1,2,3 __________
If g0,w)=¢7" ShOW that g(x,a;):if“’_t!"l

QUESTION FIVE

Given that X is a random variable with distribution

function £, () and r=g(x), where g is strictly



* monotonic decreasing function. Show .that“

@ =1-F, (g (1))+ B, (e"®). Hence or otherwise derive

the distribution function for Y, when Y=a+bx for all

b<0.



