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QUESTION ONE

(a) The first ten sample autocorrelation coefficients of 400
random numbers

arc.
r,=0.02,r, =0.05,r, =-0.09,r, =0.08,r, =-0.02,r, =0.00,, =0.12,5, =0.06,r, = 0.02,r,, =
Is there any evidence of non-randomness?

(b) Sixteen successive observations on a given time series are as follows:
1.6,08,1.2,05,09,1.1,1.1,0.6,1.5,0.8,0.9,1.2,05, 1.3, 0.8, 1.2

(i) . Isthe series stationary?
(ii) Calculater, .

(1i1) When is a time series ( x,) weakly stationary?
(3+2+5+5)Mark

QUESTION TWO

(a) Explain what is meant by:

(i) Deseasonalised series.
(i)  Seasonal variation
(if)  Moving average

(b) The following data are on the production of maize('000 ton:
in a Country:



YEAR 1951 1952  |1953 1954 |1955 | 1956
PRODUCTION | 4 3 4 5 9 9

‘000 tons) |

YEAR 1957 1958 |1959 | 1960 1961 1962
PRODUCTION | 15 10 26 17 18 31

‘000 tons)

YEAR 1963 |1964 | 1965

PRODUCTION | 35 34 40

‘000 tons)

(i) Draw the time plot of the data.
(i)  Using the Least Square Method |fit the linear trend Y=a+bT,

when T=t-8
(iify Calculate the trend value for each year.

(iv) Forecast the production for 1970 using the fitted trend.

(a) Show that for an autoregressive process of order 2 given

(1+1+1+2+5+3+2)Mar

QUESTION THREE

asx, =aX, +a,X,,+¢, the variance of x, is given by

Var(X,)= [

l-a,

l+a,

I

(-, )2'012 ] )

(b) Prove that the general solution of the equation p, -a,p, , -a,p,., =0 iS

_(l_ﬂzz)Mk+l—(1‘M2)ﬂ +
(1= 1) (10— 1)

=

(8+7)Mai



QUESTION FOUR

(a) The discrete parameter stationary process {x,} is generated
by x,-ax,, =w;t=0,+1,+2.... Where A is a constant |4/<1 and ,
satisfies the equationw, - uw,, =¢,. « being a constant (| <1) ar
;) is a purely random process with mean zero and variance
o*. Show that {x,} is a stationary AR (2) process. Hence or
otherwise determine the spectral density function.

(b) Suppose a stationary process {x,} can be represented in
following two equivalent forms; x, +e,x,, + 2, X, +.......=¢ and
X, =&+, +Boe s+ LB 2(B)=D a8’ ANd y(B)=3 5,87,
Show that z(B)=y(B).
(5+5+5)Mar

QUESTION FIVE

(a) Given the Markov process x, =¢.x, , + . Show that the canonic:
factorisation of the Spectral density function for this process i

f(®)= i

27[(1+¢12 -24, cosa)) '
(b) Find the spectral density function of the following moving
~average processes:

(I) X, =€+¢€_+¢&._,-

(i) x, = +0.5¢,_ +03¢,.,

(9+3+3)Mal



