UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2006

TITLE OF PAPER:

TOPICS IN STATISTICS

COURSE CODE :

ST 405

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THIS PAPER HAS FIVE QUESTIONS. ANSWER <u>ANY FOUR(4)</u> QUESTIONS. EACH QUESTION CARRIES 15 MARKS.

REQUIREMENTS:

Scientific Calculator

PLEASE DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTEI BY THE INVIGILATOR

QUESTION ONE

(a) The first ten sample autocorrelation coefficients of 400 random numbers

are:

```
r_1 = 0.02, r_2 = 0.05, r_3 = -0.09, r_4 = 0.08, r_5 = -0.02, r_6 = 0.00, r_7 = 0.12, r_8 = 0.06, r_9 = 0.02, r_{10} = 0.00 Is there any evidence of non-randomness?
```

- (b) Sixteen successive observations on a given time series are as follows: 1.6, 0.8, 1.2, 0.5, 0.9, 1.1, 1.1, 0.6, 1.5, 0.8, 0.9, 1.2, 0.5, 1.3, 0.8, 1.2
 - (i) Is the series stationary?
 - (ii) Calculate r_1 .
 - (iii) When is a time series (X_i) weakly stationary?

(3+2+5+5)Mark

QUESTION TWO

- (a) Explain what is meant by:
 - (i) Deseasonalised series.
 - (ii) Seasonal variation
 - (iii) Moving average
- (b) The following data are on the production of maize('000 tons in a Country:

YEAR	1951	1952	1953	1954	1955	1956
PRODUCTION	4	3	4	5	9	9
('000 tons)						
YEAR	1957	1958	1959	1960	1961	1962
PRODUCTION	15	10	26	17	18	31
('000 tons)						
YEAR	1963	1964	1965			
PRODUCTION	35	34	40			
('000 tons)						

- (i) Draw the time plot of the data.
- (ii) Using the Least Square Method ,fit the linear trend Y=a+bT, when T=t-8
- (iii) Calculate the trend value for each year.
- (iv) Forecast the production for 1970 using the fitted trend.

(1+1+1+2+5+3+2)Mar

QUESTION THREE

(a) Show that for an autoregressive process of order 2 given as $X_{i} = \alpha_{1}X_{i-1} + \alpha_{2}X_{i-2} + \varepsilon_{i}$, the variance of X_{i} is given by

$$Var(X_t) = \left(\frac{1-\alpha_2}{1+\alpha_2}\right) \left[\frac{\sigma_s^2}{(1-\alpha_2)^2-\alpha_1^2}\right].$$

(b) Prove that the general solution of the equation $\rho_k - \alpha_1 \rho_{k-1} - \alpha_2 \rho_{k-2} = 0$ is

$$\rho_{k} = \frac{\left(1 - \mu_{2}^{2}\right) \mu_{1}^{k+1} - \left(1 - \mu_{1}^{2}\right) \mu_{2}^{k+1}}{\left(1 - \mu_{1} \mu_{2}\right) \left(\mu_{1} - \mu_{2}\right)}.$$

(8+7)Mar

QUESTION FOUR

- (a) The discrete parameter stationary process $\{X_t\}$ is generated by $X_t \lambda X_{t-1} = w_t; t = 0, \pm 1, \pm 2, \ldots$. Where λ is a constant $|\lambda| \le 1$ and w_t satisfies the equation $w_t \mu w_{t-1} = \varepsilon_t$. μ being a constant $(|\mu| < 1)$ are (ε_t) is a purely random process with mean zero and variance σ^2 . Show that $\{X_t\}$ is a stationary AR (2) process. Hence or otherwise determine the spectral density function.
- (b) Suppose a stationary process $\{X_i\}$ can be represented in following two equivalent forms; $X_i + \alpha_1 X_{i-1} + \alpha_2 X_{i-2} + \dots = \varepsilon_i$ and $X_i = \varepsilon_i + \beta_1 \varepsilon_{i-1} + \beta_2 \varepsilon_{i-2} + \dots$ Let $\pi(B) = \sum \alpha_j B^j$ and $\psi(B) = \sum \beta_j B^j$, Show that $\pi(B) = \psi^{-1}(B)$.

(5+5+5)Mar

QUESTION FIVE

- (a) Given the Markov process $X_i = \phi_1 X_{i-1} + \varepsilon_i$. Show that the canonical factorisation of the Spectral density function for this process is $f(\omega) = \frac{\sigma^2}{2\pi (1 + \phi_1^2 2\phi_1 \cos \omega)}.$
- (b) Find the spectral density function of the following moving average processes:

(i)
$$X_{i} = \varepsilon_{i} + \varepsilon_{i-1} + \varepsilon_{i-2}$$
.

(ii)
$$X_{i} = \varepsilon_{i} + 0.5\varepsilon_{i-1} + 0.3\varepsilon_{i-2}$$

(9+3+3)Mar