#### UNIVERSITY OF SWAZILAND

#### DEPARTMENT OF STATISTICS AND DEMOGRAPHY

## **MAIN EXAMINATION PAPER, 2006**

**COURSE TITLE:** 

**Mathematics for Statisticians** 

**COURSE CODE:** 

ST 202

TIME ALLOWED:

2 HOURS

**INSTRUCTIONS:** 

This paper consists of five questions, answer  $\underline{any\ three}$ 

questions

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

# **Question 1**

Find the derivative  $\frac{dy}{dx}$  of the following functions:

(a) 
$$f(x) = \frac{5}{2x^3}$$

**(b)** 
$$y = (3x - 2x^2)(5 + 4x)$$

(c) 
$$y = \frac{x-1}{2x+3}$$

$$(d)^{-}f(x) = e^{-3x^2}$$
 (5)

# **Question 2**

Evaluate the following integrals:

$$(a) \int e^{3x+1} dx ag{5}$$

**(b)** 
$$\int (3x^3 - 4x)dx$$
 **(5)**

(c) 
$$\int e^{-2x} dx$$

(d) Given that 
$$F(x, y) = 10x^2y$$
, Find (5)

- (i)  $F_x$  (ii)  $F_y$

# **Question 3**

Evaluate the following:

(a) 
$$\int_{1}^{2} \int_{0}^{x} (2xy + 3)^{x} dy dx$$
 (10)

$$\text{(b)} \int_{y}^{5y} \sqrt{x - y} dx \tag{10}$$

### **Question 4**

Use Newton's method to find the positive root of the following equations:

(a)  $f(x) = x^2 - 8$  using x = 1 as the initial guess ( use up to 6 decimal places and three iterations) (10)

(b) 
$$f(x) = 2x^3 + x^2 - x + 1$$
 (10)

## **Question 5**

(a) Solve the following system of equations using the method of determinants

$$5x \div 2y = 8$$

$$23x + 7y = 28$$
(5)

(b) Find the eigenvalues and eigenvectors of the matrix:

$$\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix} \tag{7}$$

(c) Find the adjoint of the matrix A below and use the adjoint to find the inverse of the matrix:

$$\mathbf{A} = \begin{pmatrix} 4 & 3 & 2 \\ 6 & 5 & 10 \\ 10 & 1 & 6 \end{pmatrix} \tag{8}$$

END OF EXAM.