UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2005

TITLE OF PAPER: OPERATIONS RESEARCH I

COURSE CODE : ST 307

TIME ALLOWED: TWO (2) HOURS

INSTRUCTIONS: ANSWER ANY THREE (3) QUESTIONS.

REQUIREMENTS: CALCULATOR

PLEASE DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

Question 1.

Consider the following linear programming problem

Maximize
$$z = 2x_1 + 3x_2$$
 subject to

$$x_{1} + 2x_{2} \le 10$$

$$3x_{1} + x_{2} \le 15$$

$$x_{2} \le 4$$

$$x_{1}, x_{2} \ge 0$$

- (a) Solve this problem using the graphical method.
- (b) Find the range of values for the objective function coefficients for which the current optimal solution will remain optimal.
- (c) Which resource is to be given top priority when the allocation of resources is made and why?

Question 2

- (a) Briefly define the following terms as used in linear programming
 - (i) Infeasible solution
 - (ii) Degeneracy
 - (iii) Alternative optimal solution
- (b) (i) Solve the following linear program using the simplex method

Maximize
$$z = 3x_1 + 2x_2 + 5x_3$$

subject to
 $x_1 + 2x_2 + x_3 \le 430$
 $3x_1 + 2x_3 \le 460$
 $x_1 + 4x_2 \le 420$
 $x_1, x_2, x_3 \ge 0$

(ii) Identify shadow prices for the resources and explain their significance.

Question 3

Given the following primal problem

Minimize
$$z = 10x_1 + 5x_2 + 4x_3$$

subject to
$$3x_1 + 2x_2 - 3x_3 \ge 3$$

$$4x_1 + 2x_3 \ge 10$$

$$x_1, x_2, x_3 \ge 0$$

- (a) Obtain the dual for this problem.
- (b) Solve the dual problem using the simplex method.
- (c) Use the dual solution to identify the optimal solution to the original primal problem.
- (d) Verify that the optimal objective values for the primal and the dual are equal.

Question 4.

A product is produced at three plants and shipped to three warehouses. The transportation costs per unit are shown in the following table

	Ware house			
Plant	W1	W2	W3	Plant Capacity/Supply
P1	20	16	24	300
P2	10	10	8	500
P3	12	18	10	100
Warehouse demand	200	400	300	

- (a) Use the Least Cost Method to find the initial basic feasible solution.
- (b) Find the optimal solution to this problem.
- (c) Express the transportation problem as a linear programming problem.