UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2005

TITLE OF PAPER:

INTRODUCTION TO REGRESSION ANALYSIS

COURSE CODE : ST 304

TIME ALLOWED: TWO(2) HOURS

INSTRUCTIONS:

THIS PAPER HAS FIVE QUESTIONS. ANSWER ANY FOUR(4) QUESTIONS. EACH QUESTION CARRIES 15 MARKS.

REQUIREMENTS:

Scientific Calculator

PLEASE DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN **GRANTED BY THE INVIGILATOR**

QUESTION ONE

Given the linear multiple regression model

 $Y=X\beta+U$, where $U\sim NID(0,\sigma^2I)$. Show that the residual sum of squares is quadratic form in U, assuming the least squares estimate of β to be β . Hence or otherwise, show that $s^2=ee/n-k$, is unbiased for σ^2 where n is the number of observations and k is the number of explanatory variables.

QUESTION TWO

For a linear regression model $Y=X\beta + U$, where $U \sim NID(0,\sigma^2I)$.

- (i) Show that the least square estimate $\hat{\beta}$ is distributed independently of e'e where $e=Y-x\hat{\beta}$.
- (ii) Show that the expected value of Y_{n+1} is $C^{\prime}\hat{\beta}$, where $C=[1 \ X_{2,n+1} \ X_{3,n+1}....]$

QUESTION THREE

In a multiple linear regression model $Y=X\beta + U$, if all the assumptions necessary for the least squares method hold except that $E(UU^l)_{\neq \sigma^2I}$.

- (a) What happens to the estimates of the parameters by the Ordinary least squares method?
- (b) Suggest an alternative estimating procedure and find (i) the estimates of the parameters.
 - (ii) the var-covariance matrix of the estimates.

QUESTION FOUR

In the analysis of variance table given below for a regression data set of twenty cases.

- (i) Find the values of the asterisked cells.
- (ii) Test for $\beta_2=0$, given that $t_{n-1,0.25}=2.093$
- (iii) Compute F-value for the regression coefficients.

ANALYSIS OF VARIANCE TABLE

(a) REGRESSION COEFFICIENTS

Regression coefficient	Estimated regression coefficient	Estimated standard deviation	t-value
B_0	33.87407	***	18.68
B ₁	***	0.00889	-11.44
B ₂	8.05547	1.45911	***

(b) ANOVA RESULTS

Source of variation	Df	SS	MS
Regression	***	1504.41	***
Error	***	***	10.38
Total	***	1680.80	

QUESTION FIVE

In a study of factors thought to be related to admission patterns of a large general hospital. The administrator obtained these data on ten communities in the hospital's catchment's area

Persons per 1000 popultion admitted during study period.(Y)	Index of availability of other health services.(x ₁)	Index of indigency. (x_2)
61.6	6.0	6.3
53.2	4.4	5.5
65.5	9.1	3.6
64.9	8.1	5.8
72.7	9.7	6.8
52.5	4.8	7.9
50.2	7.6	4.2
44.0	4.4	6.0
53.8	9.1	2.8
53.5	6.7	6.7

Given that

 $\sum X_1^2 = 525.73, \sum X_1 X_2 = 374.31, \sum Y^2 = 33349.92, \sum X_2^2 = 331.56, \sum X_1 Y = 4104.32, \sum X_2 Y = 31382.$

- (i) Obtain the regression equation of Y on X_1 and X_2
- (ii) Predict the admission population when X_1 =11.5 and X_2 =5, using the fitted regression model.