UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2005

TITLE OF PAPER: PROBABILITY THEORY

COURSE CODE : ST 201

TIME ALLOWED: THREE (3) HOURS

INSTRUCTIONS:

THIS PAPER HAS SEVEN QUESTIONS. ANSWER ANY SIX (6) QUESTIONS.

EACH QUESTION CARRIES 10 MARKS.

REQUIREMENTS: Scientific Calculator

PLEASE DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN **GRANTED BY THE INVIGILATOR**

QUESTION ONE

(a) For any value of $k \ge 1$, define a discrete random variables X to have the probability function

$$P_{x(x)} = (k^2-1)/k$$
, $x=0$
= $\frac{1}{2}\{k^2\}$, $x=-k$, k
= 0, otherwise.

Compute the mean and variance of this random variable.

(b) The joint probability density function of the random variables X and Y is given as:

x, y	1,1	1,2	1,3	2,1	2,2	2,3
f(x, y)	2/15	4/15	3/15	1/15	1/15	4/15

Find σ_{xy} and ρ_{xy} when f(x,y)=0 elsewhere.

QUESTION TWO

(a) Obtain the characteristic function of the distribution of a random variable X with density function e^{-x} , for x > 0.

(b) The distribution function of X is

$$G_{x}(x) = 0$$
 , $x < 1$
= $\log x$, $1 \le x \le e$
= 1, $x > e$.

Obtain the interquartile range of this random variable.

QUESTION THREE

A man is allowed to flip a fair coin until the first head appears and will win 2^x Dollar at the occurrence of the first head, there X is the total number of flips required.

- (a) What is the expected value of his winning the game?
- (b) If the amount he pays to play a game is equal to the amount he expects to win, the game is fair. How much should he pay to play the game to make it fair?
- (c) If $Y \sim b(n,p)$, find the smallest value of n for which $P(|Y-P|<\xi) \ge 0.9 \ \forall \ \xi > 0.$

QUESTION FOUR

- (a) Let X be a uniform random variable on the interval (1,2). A square is constructed with sides of length X. Derive the probability density function of Y=X² and compute P(Y>2).
- (b) The probability set function of the random variable X is given as $P(A) = \int_{A}^{e^{-x}} dx$, where:

 $A=\{x:0< x<_{\infty}\}$, define $A_k=\{x:2-1/k< x<3\}$, for k=1,2,3...

Obtain $\lim_{k\to\infty}(A_k)$ and $P(\lim_{k\to\infty}(A_k))$.

QUESTION FIVE

Every Saturday a fisherman goes to one of three locations: the river, the sea and a lake to catch fishes with probabities ¼,1/2 and ¼ respectively. If he goes to the sea, there is an 80% chance of catching fish, the corresponding figures for the river and the lake are 40% and 60% respectively.

(a) Find the probability that he catches fish on a given Saturday.

- (b) What is the probability that he catches fish on at least three of the five consecutives Saturdays?
- (c) If on a particular Saturday, he comes home without catching anything, what is the probability of being at each of the locations without catching fish?

QUESTION SIX

(a) Suppose a random variable Y is defined as

Y=a+bx, when $E(X)=\mu$, $Var(X)=\sigma^2$. Show that:

- (i) If $Z=(x-\mu)/\sigma$ then E(Z)=0 and Var(Z)=1.
- (ii) $E(Y)=a+b\mu$ and $Var(Y)=\sigma^2b^2$
- (b) Show that the moment generating function of the random variable $X \sim N(\mu, \sigma^2)$ is $Exp(t\mu + \sigma^2 t^2/2)$

QUESTION SEVEN

- (a) State clearly without proof, the Bayes theorem.
- (b) Assume that the probability is 0.95 that the jury selected to try a criminal case will arrive at the appropriate verdict. Suppose that the local police force is quite diligent in its duties and that 99% of

the people brought before the court are actually guilty. Compute the probability that the defendant is innocent, given that the jury finds him innocent.