UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATIONS 2011 B.A.S.S. I / D.COM I

TITLE OF PAPER

INTRODUCTORY MATHEMATICS FOR BUSINESS

COURSE NUMBER

MS 101 AND IDE MS101

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

3. USEFUL FORMULAE ARE PROVIDED AT THE END OF THE QUESTION PAPER.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

:

Question 1

- 1. (a) Use synthetic division to find the quotient and remainder when $5x^3 6x^2 2$ is divided by x + 3. [6]
 - (b) When the polynomial $x^3 + ax^2 + bx 32$ is divided by x + 3 the remainder is -35. Given that x + 4 is a factor find a and b.
 - (c) Find all the roots of the polynomial $x^4 + 5x^3 + 5x^2 5x 6$. [8]

Question 2

- 2. (a) A student wants to buy a new computer after 3 years that will cost E8000. If he only has E5000 available to deposit now, what interest rate is required for it to increase to E8000 in 3 years if the interest is compounded monthly. [5]
 - (b) How long will it take an ivestment to double with 10% interest compounded continuously. [5]
 - (c) Solve for x in each of the following equations

(i)
$$27^{4x} = 9^{4x+1}$$
. [4]

(ii)
$$\log_3(2x-1) = -\log_3 x + \log_3(4x-3)$$
. [6]

Question 3

3. (a) Prove that

(i)
$$\tan \theta + \cot \theta = \sec \theta \csc \theta$$
. [5]

(ii)
$$\frac{1}{1 - \cos \theta} + \frac{1}{1 + \cos \theta} = 2 \csc^2 \theta$$
. [5]

(b) Solve the trigonometric equation

$$2\sin^2 x = 1 - \cos x$$

giving all solutions between 0° and 360°. [6]

(c) Without using calculators find the exact value of cos 75. [4]

Question 4

- 4. (a) Find the 6th term in the expansion of $(2x + 3y^2)^{10}$. [5]
 - (b) Write out the first four terms in the expansion of $(1+x)^{-1/3}$. [5]
 - (c) Use Cramer's rule to solve the system

$$2x - y + 2z = 2$$

 $x + 10y - 3z = 5$
 $-x + y + z = -3$

[10]

Question 5

- 5. (a) Find the first three terms of an arithmetic progression whose 9th term is 16 and 40th term is 47. [5]
 - (b) Find the 16th term of the geometric progression

[5]

- (c) If the 9th term of a geometric progression is 729 and the 6th term is 27 find the first three terms of the geometric progression. [5]
- (d) Convert the repeating decimal 0.27272727... into and equivalent common fraction. [5]

Question 6

6. (a) Given that

$$A = \begin{pmatrix} 1 & 2 \\ 4 & -6 \\ 7 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & -3 \\ -9 & 7 & 3 \end{pmatrix}$$

i. Find the transpose of B.

 $[\mathbf{4}]$

ii. Evaluate BA.

[6]

(b) Prove by mathematical induction that the following formula

$$\frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

is valid for all positive integers.

[10]

Question 7

7. (a) Find the centre and radius of the circle

$$x^2 + y^2 - 10x + 8y + 5 = 0$$

[5]

[6]

- (b) Find the equation of a line passing through the intersection of 2x + y = 5 and 3x + 4y = 10 and is parallel to 3x = 13y. [5]
- (c) Find the equation of the circle with centre (-2, -1) and radius $\sqrt{5}$. [4]
- (d) Solve the following complex quadratic equation

$$z^2 + 2iz + 8 = 0.$$

Express your answer as a complex number in the form x + iy.

END OF EXAMINATION

Useful Formulas

1.
$$\sin^2 \theta + \cos^2 \theta = 1$$

2.
$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

3.
$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

4.
$$cos(A + B) = cos A cos B - cos A cos B$$

5.
$$cos(A - B) = cos A cos B + cos A cos B$$

6.
$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

7.
$$\sin 2A = 2 \sin A \cos A$$

$$8. \cos 2A = \cos^2 A - \sin^2 A$$

Degrees	0°	30°	45°	60°	90°
$\sin heta$	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1/2	0
$\tan heta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	