UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2009/2010

B.A.S.S. I / D.COM I

TITLE OF PAPER : INTRODUCTORY MATHEMATICS FOR BUSINESS

COURSE NUMBER : MS 101 AND IDE MS101

TIME ALLOWED : THREE (3) HOURS

<u>INSTRUCTIONS</u> : 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

3. USEFUL FORMULAE ARE PROVIDED AT THE END OF THE QUESTION PAPER.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- 1. (a) Use long division to find the quotient and remainder when $x^4 3x^3 + 2x^2 5 \text{ is divided by } x^2 x + 1.$ [6 marks]
 - (b) When $4x^3 + px^2 + 5x + q$ is divided by (x + 2) the remainder is -35. When it is divided by x - 5 the remainder is 574. What are the values of p and q? [7 marks]
 - (c) Find all the real roots of the polynomial

$$x^4 + 9x^3 + 21x^2 - x - 30 = 0$$
 [7 marks]

QUESTION 2

- 2. (a) Solve the following equations for x
 - (i) $\log_2 x + \log_2(x 7) = 3$ [5 marks] (ii) $2^{x+1} = 3^{x-1}$ [5 marks]
 - (b) Sipho wants to buy a new computer after three years that will cost E5000. How much should he deposit now, at 6% interest compounded monthly to give the required E5000 in 3 years? [5 marks]
 - (c) Find the time required to treble a certain amount compounded continuously at 12% interest. [5 marks]

3. (a) Prove the following trigonometric identities

i. $\tan \theta + \cot \theta = \sec \theta \csc \theta$

[6 marks]

ii. $(1 - \cos \theta)(1 + \sec \theta) = \sin \theta \tan \theta$

[4 marks]

(b) Solve the trigonometric equation

 $2\sin^2 x + 3\cos x - 3 = 0$

giving all solutions between 0° and 360° .

[6 marks]

(c) Use the sum-difference formulas to find the exact value of $\sin 15^{\circ}$

[4 marks]

QUESTION 4

4. (a) Use the general formula for the rth term to find the coefficient of x^6 in the binomial expansion of

$$(2+x^2)^8$$

[5 marks]

- (b) Write the first five (5) terms in the expansion of $(1+x)^{-3}$
- [5 marks]
- (c) Use Cramer's rule to solve the following system of equations

x + 2y + z = 1

[10 marks]

$$x - y - z = 0$$

2~ + 4 + 7 - 3

- 5. (a) Find the sum of the series $2+5+8+\ldots+1001$. [5 marks]
 - (b) An auditorium has 40 rows with 30 seats in the first row,33 in the second row, 36 in the third row, and so forth.How many seats are in the auditorium?

[5 marks]

(c) The fourth term of a geometric projection is 1 and the eighth term is $\frac{1}{256}$. Find the tenth term.

[5 marks]

(d) Convert 3.3818181 into an equivalent common fraction

[5 marks]

QUESTION 6

6. (a) Find the equation of a straight line passing through the intersection of 3x-y=9 and x+2y=-4, perpendicular to 3=4y+8x

[7 marks]

(b) Find the centre and radius of a circle defined by the equation

$$x^2 - 6x + y^2 + 10y + 25 = 0.$$

[6 marks]

(c) Find the equation of the line that passes through the points (2, 4) and (1, 2).

[7 marks]

7. (a) Solve the complex quadratic equation

$$z^2 - (3 - i)z + 4 = 0$$

and express you answer in the form x + iy

[10 marks]

(b) Prove by mathematical induction that the following formula

$$5 \cdot 6 + 5 \cdot 6^2 + 5 \cdot 6^3 + \dots + 5 \cdot 6^n = 6(6^n - 1)$$

is valid for all positive integers.

[10 marks]

END OF EXAMINATION

Useful Formulas

$$1. \sin^2 \theta + \cos^2 \theta = 1$$

2.
$$sin(A + B) = sin A cos B + cos A sin B$$

3.
$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

4.
$$cos(A + B) = cos A cos B - sin A sin B$$

5.
$$cos(A - B) = cos A cos B + sin A sin B$$

6.
$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

7.
$$\sin 2A = 2 \sin A \cos A$$

$$8. \cos 2A = \cos^2 A - \sin^2 A$$

$$9.\cos 2A = 2\cos^2 A - 1$$

10.
$$\cos 2A = 1 - 2\sin^2 A$$

Degrees	00	30°	45°	60°	90°
$\sin \theta$	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1/2	0
an heta	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	