University of Swaziland

Supplementary Examination - July 2010

BASS I

Title of Paper

: Elementary Quantitative Techniques I

Course Number

: MS011

Time Allowed

: Three (3) hours

Instructions

.

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

(a) Two straight lines ℓ_1 and ℓ_2 are defined by the equations

$$y = m_1x + c_1$$
, and $y = m_2x + c_2$, respectively.

State the relationship between m_1 and m_2 if

- i) ℓ_1 is parallel to ℓ_2 ; [3]
- ii) ℓ_1 is perpendicular to ℓ_2 . [4]
- iii) ℓ_1 and ℓ_2 are both parallel to the x-axis. [3]
- (b) Find the equation of the straight line that is perpendicular to -2x + 3y = 5 and passing through the point (4, -2).

Question 2

- i) The polynomial $P(x) = x^3 + ax^2 + bx 1$ is divided by (x-2) and (x+1). The remainders are 7 and 4 respectively. Find the values of a and b. [6]
- ii) Use long division to find the quotient and remainder when $P(x) = 3x^4 + 2x^2 4$ is divided by D(x) = x 1. [10]
- iii) Show that x = -2 is not a root of the polynomial $P(x) = 3x^4 + 2x^2 4$. [4]

A dealer bought x toys for \$27.

- (a) Write down an expression, in terms of x, for the price in dollars, he paid for each toy. [3]
- (b) He proposed to sell each toy at a profit of 50c. Show that his proposed price was $\$\frac{54+x}{2x}$. [4]
- (c) He found that he was only able to sell 8 toys at this price. Write down an expression in terms of x for
 - i. the total money, in dollar, he received for the 8 toys [3]
 - ii. the number of toys that remained.
- (d) The dealer sold these remaining toys at 2 each. Write down an expression, in terms of x, of the total money, in dollars, he received for them. [3]
- (e) Given that the dealer received \$30 altogether, form an equation in x and show that it simplifies to

$$x^2 - 21x + 108 = 0. ag{5}$$

Question 4

(a) Given that $\log_7 2 = 0.356$ and $\log_7 3 = 0.565$, evaluate the following

i.
$$\log_7 6$$
 [4]

ii.
$$\log_7 \sqrt{3}$$
 [4]

(b) Solve for x, given

i.
$$2^{x+1} = 7$$
 [5]

ii.	$\log_4(x+17)$	$=2\log_4(x-3).$	[
11.	$1084(\pi \pm 11)$	$-210g_4(x-0)$.	

(a) Solve the trigonometric equation

$$2\sin x = 1$$
, for $0^0 \le x < 360^0$. [5]

b. Prove the following identities

i.
$$(1 + \tan^2 \theta) \cos^2 \theta \equiv 1$$
 [7]

ii.
$$\sec \theta - \cos \theta \equiv \sin \theta \tan \theta$$
. [8]

Question 6

- (a) On 01 May 1998, William invested E900 for 4 years at 6% per annum simple interest.
 - i. Calculate the interest he received on his investment. [4]
 - ii. He invested another E900 for 3 years at 6% per annum simple interest on 01 May 1999, and then E900 for 2 years at 6% per annum simple interest on 01 May 2000, and a final E900 for 1 years at 6% per annum simple interest on 01 May 2001. William withdrew all his money on 01 May 2002.

Calculate the total sum of money that he withdrew.[8]

(b) Find the balance after 4 years of E5,000 is invested into an account offering 9% interest compounded

- (a) The first 3 terms of an AP are x + 3, 2x + 6 and 8. Find the value of x and the sum of the first 12 terms. [6]
- (b) Show that x+1, x+3 and x+5 cannot be three consecutive terms of a GP, whatever the value of x. [4]
- (c) Evaluate and leave your answer in the form a + ib.

i.
$$(2+3i)^2$$
 [5]

i.
$$(2+3i)^2$$
 [5]
ii. $\frac{3-4i}{5+2i}$