University of Swaziland

Final Examination, December 2009

Bass I

Title of Paper

: Elementary Quantitative Techniques I

Course Number

: MS011

Time Allowed

: Three (3) hours

Instructions

:

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) Factorise
$$x^2 - b^2 + x + b$$
 completely. [6]

(b) Simplify each of the following

i.
$$\frac{y^2 + 3y + xy - 10 - 2x}{-2 + y}$$

ii.
$$\frac{\cos^2 x + \cos x - 6}{-2 + \cos x}$$
 [8]

ii.
$$\frac{\cos^2 x + \cos x - 6}{-2 + \cos x}$$
 [6]

Question 2

(a) Given the function

$$f(x) = \frac{2x - q}{x + 3}, \quad x \neq -3$$

where q is a constant.

Find

i)
$$f(0)$$
 [2]

ii)
$$q$$
 if $f^{-1}(3) = 7$. [8]

(b) Use long division to find the quotient and remainder when $P(x) = x^4 + 2x^2 + x - 1$ is divided by D(x) = x - 2. [10]

Question 3

(i) Consider the straight line defined by 2y-qx=3, where q is a constant. Find (in terms of q) the equation of the straight line perpendicular to 2y - qx = 3, and passing through the point (-2,3). [10]

(b) State the Remainder Theorem.

- [3]
- (c) Use the remainder theorem to find the remainder when $P(x) = 3x^2 4x + 1$ is divided by 2x 4. [7]

Question 4

(a) Consider the triangle below, and then answer the following questions.

Find the exact values of (leave your answers as fractions):

.
$$\sin A\hat{B}C$$
 [2]

ii.
$$\sec B\hat{C}A$$
 [2]

iii.
$$\cot A\hat{B}C$$
 [2]

(b) Prove the following identities

i.
$$\cot \theta + \tan \theta \equiv \csc \theta \sec \theta$$
 [7]

ii.
$$\frac{\cot \theta}{\tan \theta} + 1 \equiv \csc^2 \theta.$$
 [7]

Question 5

(a) Mark the points corresponding to the following complex numbers on the complex plane.

i.
$$2+3i$$
 [3]

ii.
$$-1+i$$
 [3]

b. Express the following in the form a + ib.

i.
$$(3+i)(4-2i)$$
 [4]

ii.
$$\left(\frac{1-i}{1+i}\right)^2$$
 [5]

c. Find the sum of the first 12 terms of the GP [5]

Question 6

(a) Given that $\log_7 2 = 0.356$ and $\log_7 3 = 0.565$, find the values of

i.
$$\log_7\left(\frac{2}{3}\right)$$
 [2]

ii.
$$\log_7 14$$
. [3]

(b) Solve for x, given

i.
$$2^{x+3} = 5$$
 [4]

ii.
$$2\log_5 x = \log_5(2x+3)$$
 [5]

iii.
$$\log_3(x^2+2) = 1 + \log_3(x+2)$$
 [6]

Question 7

- (a) The price of petrol was increased by 10% in March and then reduced by 10% in November. Find the percentage change in price between April and November. [4]
- (b) Find the balance after 5 years if E6000 is invested into an account offering 7% interest compounded

	1.	semi-annually								[4]
	ii.	quarte	rly							[4]
(c)	After	how i	many	years	will	a	principal	amount	of	E7000
	triple	e if inve	sted ir	nto an	acco	un	t offering (6% intere	ste	d com-

[8]

pounded quarterly?