UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2007

MS012 Year. I

TITLE OF PAPER: ELEMENTARY QUANTITATIVE METHODS

COURSE NUMBER:

MS012

TIME ALLOWED:

THREE HOURS

INSTRUCTIONS:

1. This paper consists of SEVEN questions on FOUR pages.

2. Answer any FIVE questions.

3. Calculators may be used.

SPECIAL REQUIREMENTS:

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Show that the equation $a^2x^2 + ax + 1 = 0$ can never have real roots.

[5 marks]

(b) The polynomial $x^3 + ax^2 + bx - 1$ is divided by x - 2 and x + 1. The remainder are 7 and 4 respectively. Find the value of a and b.

8 marks

(c) Solve the simultaneous equations x + 2y = 7 and $x^2 - 4x + y^2 = 1$ [7 marks]

Question 2

- (a) Factorise $x^3 4x^2 + 5x 2$. Hence solve the equation $x^3 4x^2 + 5x 2 = 0$.
- [12 marks] (b) Use long division to find the quotient and remainder when $2x^4 + 3x^2 + x + 4$ is divided by x 1.

[8 marks]

- (a) Evaluate the following limits (i) $\lim_{x\to 0} \frac{x^2+x}{x}$

[4 marks]

(ii)
$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1}$$

[4 marks]

(iii)
$$\lim_{x \to \infty} \frac{x+2}{x^2+1}$$

[4 marks] (b) Use the limit definition of the derivative to find f'(x) is $f(x) = x^2 + 1$

Question 4

(a) Find f'(x) for each of the following functions (i) $f(x) = 2x^7 + 3x^2 + 4$

(i)
$$f(x) = 2x^7 + 3x^2 + 4$$

[3 marks]

(ii)
$$f(x) = e^{4x+2} + x \cos x$$

[4 marks]

(iii)
$$f(x) = (x + \sin x)^{11}$$

[4 marks]

(iv)
$$f(x) = \frac{x+4}{x^2+1}$$

[4 marks]

(b) If
$$y = (ax + 2)^2$$
 and $\frac{d^2y}{dx^2} = 18$, find the value(s) of a.

[5 marks]

- (a) Evaluate the following integrals
 - (i) $\int (2x^4 + x^2 + 5)dx$

[4 marks]

(ii) $\int \frac{1}{x} dx$

[3 marks]

(iii) $\int e^{3x+5} dx$

[5 marks]

(b) Find the area enclosed by the curve $f(x) = -x^2 + x + 2$ and the x-axis.

Question 6

(a) Sketch the curve $f(x) = x^2 - 4x + 3$ by considering x and y intercepts, turning points, intervals of decrease and increase.

[10 marks]

(b) Show that the function $f(x) = x^3 + x^2 + 5x + 6$ is always increasing.

[4 marks]

(c) If $R = \frac{v^2}{4} + \frac{500}{v}$, find the value of v for which R is a minimum.

[6 marks]

(a) Solve the equation

$$\log_5 x = 1 - \log_5(x - 4)$$

[5 marks]

(b) If the 12th term of an arithmetic progression is double the 5th term, find the common difference, given that the first term is 7.

[7 marks]

- (c) If x-2, x-1 and 3x-5 are the first three terms of a geometric progression, find
 - (i) the possible values of x.
 - (ii) the common ratio for each of the possible geometric progressions.

[8 marks]

****** END OF EXAMINATION ******