UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2006

B.A.S.S. I / D.COM I

TITLE OF PAPER

INTRODUCTORY MATHEMATICS FOR BUSINESS

COURSE NUMBER

: MS 101 AND IDE MS101

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

3. USEFUL FORMULAE ARE PROVIDED AT THE END OF THE QUESTION PAPER.

SPECIAL REQUIREMENTS

: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- 1. (a) Use the long division method to find the quotient and the remainder when $P(x) = x^4 3x^3 + 2x 5$ is divided by $D(x) = x^2 x + 1$. [6 marks]
 - (b) When the polynomial $x^4 + ax^3 + 11x^2 + bx = 12$ is divided by (x + 2) the remainder is 6. Given that (x + 4) is a factor of the polynomial, find the values of a and b. [7 marks]
 - (c) Find all the real roots of the polynomial

$$x^4 + 9x^3 + 21x^2 - x - 30 = 0.$$
 [7 marks]

QUESTION 2

- 2. (a) Solve the following equations for x
 - (i) $\log_2 x + \log_2(x 7) = 3$ [5 marks]
 - (ii) $2^{x+1} = 3^{x-1}$ [5 marks]
 - (b) Sipho wants to buy a new computer after three years that will cost E5000. How much should he deposit now, at 6% interest compounded monthly to give the required E5000 in 3 years?
 [5 marks]
 - (c) Find the time required to treble a certain amount compounded continuously at 12% interest. [5 marks]

- 3. (a) Express $\cos(-840^{\circ})$ as a cosine of an acute angle [3 marks]
 - (b) Prove the following trigonometric identities

i. $\tan \theta + \cot \theta = \sec \theta \csc \theta$

[4 marks]

ii. $(1 - \cos \theta)(1 + \sec \theta) = \sin \theta \tan \theta$

[4 marks]

(c) Solve the trigonometric equation

$$2\sin^2 x + 3\cos x - 3 = 0$$

giving all solutions between 0° and 360°.

[6 marks]

(d) Without using calculators, find the exact value of cos 105°.

[3 marks]

QUESTION 4

4. (a) Use the general formula for the rth term to find the coefficient of x^6 in the binomial expansion of

$$\left(1+x^2\right)^8$$

[5 marks]

- (b) Write out the first four terms in the expansion of $(1+x)^{-2}$ and use this expansion to estimate $(1.02)^{-2}$ correct to four significant figures. [6 marks]
- (c) Use Cramer's rule to solve the following system of equations

$$x + 2y + z = 1$$

[9 marks]

$$x - y - z = 0$$

$$2m + n + \infty = 3$$

- 5. (a) If the 8th term of a geometric progression is 243 and the 5th term is 9, find the first three terms of the geometric progression. [5 marks]
 - (b) Find the 20th term of the geometric progression 2, 10, 50, 250,.... [5 marks]
 - (c) Find three numbers in arithmetic progression such that their sum is 15 and their product is 80. [5 marks]
 - (d) Convert 0.818181 into an equivalent common fraction [5 marks]

QUESTION 6

- 6. (a) Find the equation of a straight line passing through the intersection of 3x y = 9 and x + 2y = -4, parallel to 3 = 4y + 8x [7 marks]
 - (b) Find the centre and radius of a circle defined by the equation

$$x^2 - 6x + y^2 + 10y + 25 = 0$$

[6 marks]

(c) Find the equation of a circle that passes through the points (0,0), (3,1) and (3,9). [7 marks]

7. (a) Express the following expressions in the complex form a + bi

(i) (2-3i)(3+4i) [4 marks]

(ii) $\frac{9-2i}{4+3i}$ [6 marks]

(iii) $\sqrt{2}(\cos 135 + i \sin 135)$ [4 marks]

(b) Write the complex number $z = -3\sqrt{3} + 3i$ in mod-arg form. [6 marks]

END OF EXAMINATION

<u>Useful Formulas</u>

$$1. \sin^2 \theta + \cos^2 \theta = 1$$

$$2. \sin(A+B) = \sin A \cos B + \cos A \sin B$$

3.
$$sin(A - B) = sin A cos B - cos A sin B$$

$$4. \cos(A+B) = \cos A \cos B - \sin A \sin B$$

5.
$$cos(A - B) = cos A cos B + sin A sin B$$

6.
$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$7. \sin 2A = 2\sin A\cos A$$

$$8. \cos 2A = \cos^2 A - \sin^2 A$$

Degrees	0°	30°	45°	60°	90°
$\sin heta$	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1/2	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	