UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2006

B.A.S.S. I / D.COM I

TITLE OF PAPER

INTRODUCTORY MATHEMATICS FOR BUSINESS

COURSE NUMBER

MS 101 AND IDE MS101

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

<u>SEVEN</u> QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

3. USEFUL FORMULAE ARE PROVIDED AT THE END OF THE QUESTION PAPER.

SPECIAL REQUIREMENTS :

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- 1. (a) Use the synthetic method to divide $x^5 + 3x^3 7x^2 8x + 1$ by x + 2 [5 marks]
 - (b) Find the values of a and b if x-4 and x+3 are both factors of x^3+ax^2+bx+4 . [6 marks]
 - (c) Find all the rational roots of the polynomial $x^3 2x^2 13x 10 = 0$ [9 marks]

QUESTION 2

2. (a) Solve the following equations for x

(i)
$$\log_2(x^2 - 1) - \log_2(x - 2) = 3$$
, [5 marks]

(ii)
$$3^{2x+1} = 5^{x+1}$$
. [5 marks]

- (b) How long will it take for R10 000 to grow to R25 000 at 5% compounded continuously? [5 marks]
- (c) At what rate per annum compound interest will R4000.00 grow to R4315.14 in 3 years if the interest is compounded annually? [5 marks]

3. (a) Prove the trigonometric identity

$$\frac{1}{1 - \sin A} + \frac{1}{1 + \sin A} = \frac{2}{\cos^2 A}.$$

[4 marks]

- (b) Solve the trigonometric equation $\sin^2 y + 2\cos y = 2$, giving all solutions between 0° and 360°. [6 marks]
- (c) Convert the decimal 1.27272727 · · · into a common fraction. [5 marks]
- (d) If the 8th term of a geometric progression is 243 and the 5th term is 9, find the first three terms of the geometric progression. [5 marks]

QUESTION 4

- 4. (a) Find the 22nd term in the expansion of $(x + \frac{1}{x})^{25}$. [6 marks]
 - (b) Write out the first four terms in the expansion of $\frac{1}{\sqrt{1-x}}$ and use this expansion to estimate $\frac{1}{\sqrt{0.99}}$ correct to four significant figures. [7 marks]
 - (c) Use mathematical induction to prove the formula

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}.$$

[7 marks]

5. (a) Solve the following equation for x

$$\begin{vmatrix} -2 & 0 & 1 \\ -1 & 3 & x \\ 5 & -2 & 0 \end{vmatrix} = 3.$$

[6]

(b) use Cramer's rule to solve the system

$$2x + 3y + z = 2$$

$$-x + 2y + 3z = -1$$

$$-3x - 3y + z = 0.$$

[14 marks]

QUESTION 6

- 6. (a) Find the equation of s straight line passing through the intersection of 3x y = 9 and x + 2y = -4, perpendicular to 3 = 4y + 8x. [6 marks]
 - (b) Find the centre and radius of a circle defined by the equation $x^2 + y^2 + 6x 4y 3 = 0.$ [7 marks]
 - (c) Find the equation of the circle which passes through the points (0,0), (3,1), and (3,9).[7 marks]

7. (a) Express the following expressions in the complex form a + bi

(i) (2-3i)(3+4i) [4 marks]

(ii) $\frac{9-2i}{4+3i}$ [6 marks]

(iii) $\sqrt{2}(\cos 135 + i \sin 135)$ [4 marks]

(b) Write the complex number $z = -3\sqrt{3} + 3i$ in mod-arg form. [6 marks]

END OF EXAMINATION

Useful Formulas

 $1. \sin^2 \theta + \cos^2 \theta = 1$

2. sin(A + B) = sin A cos B + cos A sin B

3. sin(A - B) = sin A cos B - cos A sin B

4. cos(A + B) = cos A cos B - sin A sin B

5. cos(A - B) = cos A cos B + sin A sin B

6. $2\cos A\cos B = \cos(A+B) + \cos(A-B)$

7. $\sin 2A = 2 \sin A \cos A$

 $8. \cos 2A = \cos^2 A - \sin^2 A$

Degrees	00	30°	45°	60°	90°
$\sin heta$	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1/2	0
$\tan heta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	