UNIVERSITY OF SWAZILAND

Supplementary Examination 2005

Title of Paper

Elementary Quantitative Methods

Program

B.A.S.S./B.A.(Hums.) I

Course Number

MS 001 (ii)

Time Allowed

Three (3) Hours

Instructions*

1. This paper consists of SEVEN questions on THREE pages.

Answer any five (5) questions.
Non-programmable calculators may be used.

Special Requirements:

Graph Paper

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

Question 1

- (a) Find the equation of a straight line that passes through the point (2, -3) and is parallel to the line 2y 4x = 5. [8 marks]
- (b) Use long division to find the remainder when $3x^2 2x + 5$ is divided by x + 1. [12 marks]

Question 2

Given the function f(x) = 2x + 1, evaluate

(i) f(-2) [3 marks] (ii) f(x+h) [4 marks]

(iii) $f^{-1}(x)$ [5 marks]

(iv) f'(x) using the definition of a derivative. [8 marks]

Question 3

- (a) In a triangle ABC, $B\hat{A}C=90^{o},~AB=12$ cm, and AC=5 cm. Find as fractions
 - (i) $\sin A\hat{B}C$,

[2 marks]

(ii) $\cos B\hat{C}A$,

[2 marks]

(iii) $\tan A\hat{B}C$.

[2 marks]

(b) Solve the trigonometric equation $2\cos x = 1$ for $O^o \le x \le 360^o$.

[6 marks]

(c) Prove the identity

$$(1 + \tan^2 \theta)(1 - \cos^2 \theta) - \tan^2 \theta \equiv 2.$$

[8 marks]

Question 4

(a) Find $f^1(x)$ for the following functions

(i)
$$f(x) = 3x^5 - 2x^3 + x^2 + 1$$

[3 marks]

(ii)
$$f(x) = (x^2 + 1)^9$$

[4 marks]

- (b) The cost of making x articles per day is $E(\frac{1}{3}x^3 + 60x + 60)$ and the selling price of each one is $E(90 \frac{3}{2}x)$. Find
 - (i) the daily profit in terms of x,

[5 marks]

(ii) the value of x to give the maximum profit.

[8 marks]

Question 5

(a) Evaluate the following integrals

(i)
$$\int (x^5 - 3x^2 + 4) dx$$

[4 marks]

(ii)
$$\int_{-1}^{1} (x^2 + 3x - 1) dx$$

[6 marks]

(iii)
$$\int \sqrt{x-1} \ dx$$

[4 marks]

(b) Find the area enclosed by the curve $y = 2x - x^2$, the x-axis and the lines x = 0, x = 1.

[6 marks]

Question 6

(a) Solve the equation

$$x^3 + 2x^2 - x - 2 = 0$$

[10 marks]

(b) Use the remainder theorem to find the remainder when $3x^3 + x^2 - 2$ is divided by x + 1.

[4 marks]

(c) Show that the equation $a^2x^2 + ax + 1 = 0$ can never have real roots.

[6 marks]

Question 7

(a) Evaluate the following limits

(i)
$$\lim_{x \to -2} (x+5)$$

[2 marks]

(ii)
$$\lim_{x\to 3} \frac{x^2-9}{x-3}$$

[5 marks]

(b) Draw the graph of $y = x^2 - x - 2$ for values of x between -3 and 4 using a scale of 1 cm to represent 1 unit on the vertical axis, and 2 cm to represent 1 unit on the horizontal axis.

[3 marks]

Use the graph to solve

(i)
$$x^2 - x - 2 = 0$$
,

[4 marks]

(ii)
$$x^2 - x = 2x + 2$$
.

[6 marks]

****** END OF EXAMINATION *******