UNIVERSITY OF SWAZILAND

Final Examination 2005

Title of Paper

Elementary Quantitative Methods

Program

B.A. Hums./B.A.S.S. I

Course Number

MS 001 (ii)

:

Time Allowed

Three (3) Hours

Instructions

This paper consists of SEVEN questions on THREE pages.
Answer any five (5) questions.

3. Non-programmable calculators may be used.

Special Requirements: GRAPH PAPER

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

Question 1

- (a) Find the equation of a straight line that passes through the point (3,4) and is perpendicular to the line y + 2x = 5. [8 marks]
- (b) Use long division to find the remainder when $5x^2 + 2x + 1$ is divided by x + 4. [12 marks]

Question 2

Given the function f(x) = -x + 4, evaluate

(i) f(-2) [3 marks]

(ii) f(x+h) [4 marks]

(iii) $f^{-1}(x)$ [5 marks]

(iv) f'(x) using the definition of a derivative. [8 marks]

Question 3

(a) From the given triangle ABC, find as fractions

- (b) Solve the trigonometric equation $2\sin x = 1$ for $O^o \ge x \ge 360^o$
- [6 marks]

(c) Prove the identity

$$(1 + \tan^2 \theta)(1 - \sin^2 \theta) \equiv 1$$

[8 marks]

Question 4

(a) Find $f^1(x)$ for the following functions

(i)
$$f(x) = x^4 + 3x^2 + x + 2$$

[3 marks]

(ii)
$$f(x) = (3x^2 + 1)^8$$

[4 marks]

- (b) The cost of making x articles per day is $E(\frac{1}{2}x^2 + 50x + 50)$ and the selling price of each one is $E(80 \frac{1}{4}x)$. Find
 - (i) the daily profit in terms of x,

[5 marks]

(ii) the value of x to give the maximum profit.

[8 marks]

Question 5

(a) Evaluate the following integrals

(i)
$$\int (x^3 + 2x^2 + 4) \ dx$$

[4 marks]

(ii)
$$\int_{-2}^{0} (x^2 + 5x - 1) dx$$

[6 marks]

(iii)
$$\int \sqrt{x+1} \ dx$$

[4 marks]

(b) Find the area enclosed by the curve $y = 3x - x^2$, the x-axis and the lines x = -1, x = 2.

[6 marks]

Question 6

(a) Solve the equation

$$x^3 + 6x^2 + 11x + 6 = 0$$

[10 marks]

(b) Use the remainder theorem to find the remainder when $x^3 + 2x^2 + 2$ is divided by x + 1.

[4 marks]

(c) Show that the equation $a^2x^2 + ax + 1 = 0$ can never have real roots.

[6 marks]

Question 7

(a) Evaluate the following limits

(i)
$$\lim_{x\to 2} (3x+4)$$

[2 marks]

(ii)
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$

[5 marks]

(b) Draw the graph of $y = x^2 + x - 2$ for values of x between -4 and 3 using a scale of 1 cm to represent 1 unit on the vertical axis, and 2 cm to represent 1 unit on the horizontal axis.

[3 marks]

Use the graph to solve

(i)
$$x^2 + x - 2 = 0$$
,

[4 marks]

(ii)
$$x^2 + x = 2x + 2$$
.

[6 marks]

****** END OF EXAMINATION *******