

UNIVERSITY OF ESWATINI

SECOND SEMESTER RESIT EXAMINATION PAPER, DECEMBER 2021

FACULTY OF SOCIAL SCIENCES

DEPARTMENT OF ECONOMICS

COURSE CODE: ECO420

TITLE OF PAPER: ECONOMETRIC METHODS II

TIME ALLOWED: 2 HOURS

Instructions

- 1. This paper consists of two (2) sections, A and B
- 2. Section A, is compulsory and carries 40 marks
- 3. Section B, contains three (3) questions
- 4. Answer any other two (2) questions in Section B

Special Requirements

Scientific calculator

Additional Material (s)

None

DO NOT turn examination paper over until instructed to do so.

SECTION A

Question 1 - Compulsory

[40]

- a) Consider the following forms of the Cobb-Douglas production function, $Y_i = \beta_1 X_{2i}^{\beta_2} X_{3i}^{\beta_3} e^{u_i}$ and $Y_i = \beta_1 X_{2i}^{\beta_2} X_{3i}^{\beta_3} u_i.$ [4]
 - Is it plausible to assume that both models are linear models?
 - Theoretically which is the right specification of the Cobb-Douglas production function? ii. [2] Why?
 - Which is the frequently used empirical form by researchers? And why?
 - What basic OLS assumption does the right specification of the model violate? And how iii. best can this model be estimated? [10]
 - b) Define the following terms.
 - Binary data
 - Count data ii.
 - Ordered data iii.
 - Categorical data iv.
 - c) Suppose you wish to determine the factors that determine the employment sector preferences (Formal Public Sector, Formal Private Sector and Informal Private Sector) in Eswatini and you run obtain the results given in the below table.

2043 Number of obs Multinomial logistic regression 828.14 LR chi2(38) 0.0000 Prob > chi2 0.2410 Pseudo R2

Log likelihood = -1303.781

og likelihood = -1303	Formal Public	Sector	Informal Private Sector		
	Coefficient	Odds Ratio	Coefficient	Odds Ratio	
			0.0463***	1.0474	
age	0.0521***	1.0534	0.0.100		
dministrative Region	L			4.4604	
Manzini	-0.0436	0.9573	0.3787**	1.4604	
	0.6267**	1.8714	0.2727	1.3135	
Shiselweni			0.2042	1.2265	
Lubombo	-0.3187	0.7272			
Geographic Location				0.4324	
Urbar	-0.9692***	0.3794	-0.8385***	0.432	
Marital Status		* 2.281	2 0.5103***	1.665	
Marrie					
Widowe	d -0.532	0.587	3 0,4030		

75

		1.3860	0.4403	1.5532
Divorced	0.3264	1.5600		
ousehold Position				1,1244
Head	0.4939**	1.6388	0.1172	
ducational Attainment		····		
Elementary	0.7453	2.1071	0.1633	1.1774
	2.1502***	8.5864	-0.7444***	0.4750
Highschool		30.9037	-1.7894***	0.1671
Vocational and College	3.4309***		-34.3019	1.27E-15
University	3.3563***	28.6834	-34,3013	
Industrial Classification				0.5000
Agriculture and mining	-2.7905***	0.0614	-0.5437	0.5806
	-2.8310***	0.0590	-0.2932	0.7459
Manufacturing	-0.6854	0,5039	-33.1531	4.00E-15
Electricity and water			1.2305	3,4230
Construction	0.6803	1.9744		3.6920
Wholesale, retail trade and	-3.5288***	0.0293	1.3061***	
hospitality industry			0,2183	1.244
Transportation and storage	-0.2749	0.7596		
constant	-4.2101***		-2.3160***	
Constant				

Evaluate the model i.

[2]

What is the base category?

[8]

Interpret the results for geographic location and educational attainment. ii.

d) Compare and contrast between the Fixed Effects Model and the Error Components Model. [4]

SECTION B

ANSWER ANY TWO QUESTIONS

Question 2

- a) Eloquently discuss the following model selection criteria, ensuring to compare each model [30] selection criteria.
 - i. R-square
 - ii. Adjusted R-Square
 - iii. AIC
 - iv. BIC
 - v. SIC
 - vi. Mallow's C criterion

Question 3

[3] a) What is a structural break? [2] b) What are the effects of disregarding the structural break? c) With the aid of an appropriate example discuss any two methods for detecting a structural [20] [5] d) What are the impacts of mis-specifying the error term?

Using an appropriate example, clearly detailing the scenario which you are trying to model and estimate, develop a panel data model under the following assumptions in tandem.

- Assume that the intercept and slope coefficients are constant across time and space and the error term captures differences over time and individuals.
- The slope coefficients are constant but the intercept varies over individuals.
- The slope coefficients are constant but the intercept varies over individuals and time.
- All coefficients (the intercept as well as slope coefficients) vary over individuals.
- The intercept as well as slope coefficients vary over individuals and time.