

UNIVERSITY OF ESWATINI

SECOND SEMESTER MAIN EXAMINATION PAPER, NOVEMBER 2021 FACULTY OF SOCIAL SCIENCES

DEPARTMENT OF ECONOMICS

COURSE CODE: ECO420

TITLE OF PAPER: ECONOMETRIC METHODS II

TIME ALLOWED: 2 HOURS

Instructions

- 1. This paper consists of two (2) sections, A and B
- 2. Section A, is compulsory and carries 40 marks
- 3. Section B, contains three (3) questions
- 4. Answer any other two (2) questions in Section B

Special Requirements

Scientific calculator

Additional Material (s)

None

DO NOT turn examination paper over until instructed to do so.

a) Table 1 presents data on management fees that a leading mutual fund firm in the US pays to its investment advisors to manage its assets. The fees depend on the net asset value of the fund. The higher the net asset value of the fund the lower the advisory fees. The distribution of management fees can be assumed to follow an exponential growth function $Y_i = \beta_1 e^{\beta_2 X_i + u_i}$. Use direct optimization to determine the estimates that minimize the sum of squares of the error. [15]

Table 1

	Fee %	Net Asset Value in Billions
	0.52	0.5
1		5
2	0.508	
3	0.484	10
4	0.46	15
5	0.4398	20
6	0.4238	25
7	0.4115	30
8	0.402	35
9	0.3944	40
10	0.388	45
11	0.3825	55
1.2	0.3738	60

b) When J=2, we form J-1=1 non redundant logits, when J>2, we can form J-1 non redundant logits. Prove this statement. [7]

c) Suppose we have count data which can be modelled using the Poisson Distribution with parameters (λ). Prove that $\lambda = E[X] = E[X - E[X]]^2$ [8]

d) Suppose we want to estimate the association of Aspirin Use on Myocardial Infarction. Calculate the generalized odds ratio, random row or column odds ratio and the reference category odds ratio and interpret the result.

Table 2

	Fatal Attack	Myocardial Infarction Nonfatal Attack		No Attack
Dlacaba	18	17	1	10845
Placebo	5	9	9	10933
Aspirin	,			

e) What is panel data?

[2]

f) What are the drawbacks of relying on the coefficient of determination?

[2]

SECTION B

ANSWER ANY TWO QUESTIONS

Question 2

[30]

a) Suppose you are a research consultant hired by the Deputy Prime Minister's Office to conduct a study on employment sector preferences by sex. The aim is to find out which characteristics determine employment in the public sector, private sector and the informal sector. The following output is obtained from running the data.

Table 2: Model Fitting Information

Table 2: Wood Fitting		
	Women	Men
	1567	2043
Number of observations	1.077.42	828.1
LR chi2(38)	0.0000	0.0000
Prob > chi ²	0.3342	0.241
Pseudo R ²	0,5542	

Table 3: Test for Independence of Irrelevant Alternatives (Females)

Table 3: Test for Independence	OI II Television					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	InL(omit)	chi2	df	P>chi2	evidence
Omitted	InL(full)	1	11.328	20	0.937	for Ho
Formal Public Sector	-301.809	-296.145				for Ho
	-217,252	-207.92	18.664	20	0.544	
Informal Private Sector		-97,256	23,704	20	0.256	for Ho
Formal Private Sector	-109.108	-37.230		<u> </u>	<u> </u>	1

Table 4: Test for Independence of Irrelevant Alternatives (Males)

Table 4: Test for Independence	OI II CICILITIES					
	1.1/6.45	InL(omit)	chi2	df	P>chi2	evidence
Omitted	InL(full)		11.059	20	0,945	for Ho
Formal Public Sector	-276.608	-271.078		 	0.483	for Ho
Informal Private Sector	-339.212	-329.412	19.601	20	0.155	for Ho
£	-134.405	-125.092	18.626	20_	0.546	TOLLIO
Formal Private Sector	1.5					

Table 5: Multinomial Logit Model Results (Female)

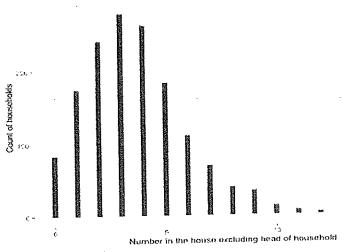
Table 5: Multinomial Logit Model Res	Formal Public	Sector	Informal Private Sector		
		Odds Ratio	Coefficient	Odds Ratio	
	Coefficient		1.0474		
	0.0521***	1.0534	0.0463***	1	
age					
Administrative Region	1	0.9573	0.3787**	1.4604	
Manzini			\	1.3135	
Shiselweni	0.6267**	1.8714	0.2727	1,000	
	-0.3187	0.7271	0.2042	1.2265	
Lubombo	-0.5107	<u> </u>			
Geographic Location			0.0205***	0.4324	
Urban	-0.9692***	0.3794	-0.8385***	0,432	
Marital Status			 -		

Married	0.8247***	2.2812	0.5103***	1,6658
Widowed	-0.5322	0.5873	0.4636*	1.5898
Divorced	0.3264	1.3860	0.4403	1.5532
Household Position				
Head	0.4939**	1.6388	0.1172	1.1244
Educational Attainment				
Educational Attainment Elementary	0.7453	2,1071	0.1633	1.1774
High school	2.1502***	8,5864	-0.7444***	0.4750
	3.4309***	30.9037	-1.7894***	0.1671
Vocational and College	3.3563***	28.6834	-34,3019	1.27E-15
University	3.5505	20.000		
Industrial Classification		0.0014	-0.5437	0.5806
Agriculture and mining	-2.7905***	0.0614		0.7459
Manufacturing	-2.8310***	0.0590	-0.2932	
Electricity and water	-0.6854	0.5039	-33.1531	4.00E-1
Construction	0.6803	1,9744	1.2305	3.4230
Wholesale, retail trade and	-3.5288***	0.0293	1.3061***	3.692
wholesale, retail trade and hospitality industry	3.020			
	-0.2749	0.7596	0.2183	1.244
Transportation and storage	1		-2.3160***	
constant	-4.2101***		<u> </u>	

^{*}Significant at 10%, **Significant at 5%, *** Significant at 1%

Table 6: Multinomial Logit Results Male

	Formal Public Se	ector	Informal Private	Sector	
	Coefficient Odds Ratio		Coefficient	Odds Ratio	
	0.0215***	1.0217	0.0157**	1.0158	
age	0,041-5				
Administrative Region	o oorg	1.0363	0.2223	1,2489	
Manzini	0.0356			1.3306	
Shiselweni	0.7093***	2.0325	0.2856		
Lubombo	-0.3155	0.7294	-0.3059	0.7365	
Geographic Location				0.5403	
Urban	-0.7578***	0.4687	-0.6159***	0.5402	
Marital Status			0.4205**	0.6502	
Married	0.3748**	1.4548	-0.4305**		
Widowed	0.1237	1.1317	-0.4054	0.6667	
Divorced	0.2629	1.3007	-0.1384	0.8708	
Household Position Head	0,0576	1.0593	0.1784	1.1953	
Educational Attainment		0.8210	-0.3380	0.713	
Elementary					
High School	0.7143***	2.0427	-0.4510*	, 0.037	


Vocational and College Education	1.6860***	5.3981	-0.8240*	0.4387
University	1.7338***	5.6619	-1.8534**	0.1567
Industrial Classification				
Agriculture and mining	-1.9861***	0.1372	-1.6642***	0.1893
Manufacturing	-3.1148***	0.0444	-1.3683***	0.2545
Electricity and water	0.4582	1.5812	0.3352	1.3983
Construction	-2.1335***	0.1184	0.4884**	1.6298
Wholesale, retail trade and	-3.4851***	0.0307	0.1859	1.2043
hospitality industry				0.4170
Transportation and storage	-1.7685***	0.1706	-0.8747***	0.4170
constant	-1.4302***		-1.1551***	

*Significant at 10%, **Significant at 5%, *** Significant at 1%

i. ii.	Based on the above information, what type of model was fitted? What was the reference category?	[2] [3]
	Comment on the model fitting information and what it means about the sufficient model. What are the assumptions of this model? Do they hold for the particular dataset?	[၁]
iv. v.	Interpret the results of the study for both males and females.	[15] [30]

Question 3

- a) Suppose that the government is interested in determining the age at which heads of households in Eswatini most likely to find the largest number of people in their household. Specify the appropriate Poisson regression model for this problem. [3]
- b) The distribution of number of people per household is plotted below, comment on the likely distribution of the number of people per household. [4]

c) Given the following array of means and variances what does the data imply in terms of the assumptions of the Poisson regression model? [6]

Age Groups	Меап	Variance	n
(15,20]	1.666667	0.6666667	6
• • •	2.166667	1.5588235	18
(20,25)	2.918367	1,4098639	49
(25,30)	3,44444	2.1931464	108
(30,35]	3,841772	3.5735306	158
(35,40)	4,234286	4,4447947	175
(40,45)		6,3962662	194
(45,50)	4.489691	5,2512231	188
(50,55]	4,010638		145
(55,60]	3.806897	6.5318966	
(60,65)	3.705882	6.1958204	153
(65,70]	3.339130	7.9980168	115
NA	2.549738	5.5435657	191

d) The following model was run using R, interpret the results.

$$\widehat{log(\lambda)} = 1.55 - 0.0047(age)$$

```
glm(formula = total ~ age, family = poisson, data = fHH1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.5499422 0.0502754 30.829 < 2e-16 ***

age -0.0047059 0.0009363 -5.026 5.01e-07 ***

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2362.5 on 1499 degrees of freedom

Residual deviance: 2337.1 on 1498 degrees of freedom

AIC: 6714
```

- e) The above model in (d) points into a situation of likely over dispersion in the model. What are the likely causes for over dispersion and what are the likely remedial measures? [5]
- f) Highlight the method of recursive least squares for testing for structural breaks in a dataset.

[5]

[7]

Question 4

[30]

Figure 1 presents regressions that were estimated using data for 48 US states from 1982 - 1988 (336 observations in total). The study aimed at ascertaining the impact of socio-economic conditions and

traffic laws on the number of traffic related death accidents. Standard errors are given in parentheses under the coefficients and the p-values are given in parenthesis under the F-statistic. Maximum allowable type 1 error is 5%.

a) Which is the base model? Why? [2]
b) Compare and contrast the six models.

c) Interpret the various F statistics for the models, also comment on which model will be adequate for estimating the impact of laws and socio-economic status on traffic accidents. [8]

d) Interpret the results of the model and clearly state which factors influence traffic related deaths in the US states. [10]

Dependent Variable: Traffic Fatality Rate (Deaths Per 10,000).

Dependent Variable: Iram		(2)	(3)	(4)	(5)	(4)
Regressor Burrian	(1) U.36***	-0.165** (6),20)	-1),64* (4,25)	0(45* (31,22)	-0.70** (0.25)	-0.46* (0.22)
Drusking age 18	(14,115)	\$10.447		(4,028 (4,074)	-0.011 (0.064)	
Drinking age 19				_45,634 *3 (4.5,8544))	_61 (042)	
Drinking age 20	e e			45,633 \$ (43,4346)	(11,046) ~0,102*	
Drinking age		•			•	-6.002 (0.817)
Mandatory jail?				0,013 (0,032)		
Mandatory community term	संस् ³	and the second	*	0,033 (0,115)	0.197 (0.137)	
Mandatory jail						0,031 (0,076)
or community service? Average vehicle unles per dri	ever.			हर्म भर्गाः (स्थापार्थः)	(1) (1) (1)	क्षात्रकार) (स.स.स.)
Unemployment rate				=0.063** (0.012)	•	-0.063* (0.912)
Real meome per capita (logs)	cuthm)			1,81** (x),47)		1.79** (0.45)
	1113	3,475	yes	yes	5%5	25.4
State effects? Time effects?	HO.	₩0	200	1,000	> ***	پ وسو
Frantistics and products Tosti	ng Exclusion	of Groups of Va	ariobles:			11.59
Time effects = 0			2.47 (0.034)	ा १.०४.४ (०.११,६७१)	(0.037)	(क्यें किंग)
Drinking age coefficients	 (*	•		0,4K (0,626)	2.00 (0.102)	
Lift vonanumty				0.17 (0.845)	0.59 (0.557)	
Copyrie coefficients ~ 0		e		38,29 (****,(8)}}	•	40,12 (<0,001)
meome per capita * O	£5, £3 ¹ ,783	0,889	0.891	4 5,43 (36)	0.89.4	11.936

Figure 1: Regression Analysis of the Effect of Drunk Laws on Traffic Deaths

e) Distinguish between intrinsically linear models and non-linear models.