UNIVERSITY OF ESWATINI

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2020/2021

COURSE NAME: SOLID STATE PHYSICS

COURSE CODE: PHY412

TIME ALLOWED: 3 HOURS

INSTRUCTIONS

:.

- \bullet There are five questions in this paper, and each question carries a total of 25 marks.
- Answer any <u>four</u> questions in your preferred order.
- Points for different questions are shown in the right-hand margins.
- Additional materials included in this paper are a list of fundamental constants in Physics.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question One [25 Marks]

The total energy per molecule of an ionic crystal can be written as a function of the interionic separation r as follows:

$$U_{\rm ion} = \frac{\alpha \nu e^2}{4\pi \epsilon_0 r} + B \exp\left(-\frac{r}{\rho}\right) \ . \label{eq:Uion}$$

- (a) Briefly describe the parameters α , ν and ρ . [6]
- (b) Show that the cohesive energy per molecule of the crystal can be expressed as:

$$U_{\rm ion}(r_0) = \frac{\alpha \nu e^2}{4\pi \epsilon_0 r_0} \left(1 - \frac{\rho}{r_0} \right) ,$$

where r_0 is the equilibrium separation between two nearest atoms. [12]

(c) Show that stability of the ionic crystal can only occur for the condition $r_0 < 2\rho$. [7]

Question Two [25 Marks]

- (a) Define the following terms/phrases concerning crystal structures:
 - (i) Lattice [1]
 - (ii) Basis [1]
 - (iii) Primitive unit cell [1]
 - (iv) Wigner-Seitz primitive cell [1]
 - (v) Bravais lattice [1]
- (b) Aluminum(Al), whose atomic mass is 26.982 u, forms an FCC structure and has an atomic radius of 0.143 nm.
 - (i) Calculate the lattice constant, a. [3]
 - (ii) Calculate the atomic packing factor, PF. [3]
 - (iii) Calculate the theoretical density of the metal in the unit cell. How does this compare to the actual density of aluminum (2.700g/cm³)? Why is there a difference? [6]
- (c) Derive the following formula for the general interplanar spacing for crystalline systems with orthogonal axes:

$$d_{hk\ell} = \left(\frac{h^2}{a_1^2} + \frac{k^2}{a_2^2} + \frac{\ell^2}{a_3^2}\right)^{-1/2}.$$

[8]

Question Three [25 Marks]

Consider a one-dimensional chain of vibrating identical atoms of mass m, and suppose a is the equilibrium separation between two adjacent atoms and K is the spring constant for the elastic bonds connecting nearest neighbors.

(a) By starting from the equation of motion for the n^{th} atom and treating the displacement as a plane wave with wave-vector k, derive the following formula for the dispersion relation:

 $\omega(k) = \sqrt{\frac{4K}{m}} \left| \sin\left(\frac{ka}{2}\right) \right|.$

(b) Sketch the dispersion relation in the first and second Brillouin zones. Mark clearly the boundaries of the Brillouin zones. [4]

[12]

(c) Find expressions for the phase velocity and group velocity. [6]

(d) Briefly discuss the non-dispersive (acoustic wave) regime of the dispersion relation. [3]

Question Four [25 Marks]

- (a) Diffraction studies involving X-rays or electrons give information about the crystallographic properties of solids.
 - (i) Compare these two techniques with reference to particle energies and type of information that can be obtained.

[4]

[1]

[10]

- (ii) Which technique is most appropriate for studying surface crystallography?
- (b) State five assumptions of the Drude Model for electron transport properties in metals. [5]
- (c) Discuss one major success and one major failure of the Drude Model. [2]
- (d) Starting from the equation of motion of an electron in an electric field, show that the electric conductivity is

$$\sigma = \frac{ne^2\tau}{m_e} \; ,$$

- where n is the number of electrons, τ is the relaxation time between collisions, and the other symbols have their usual meaning.
- (e) The resistivity of copper is $1.7 \times 10^{-6} \Omega$ cm and the atomic density of copper is 8.5×10^{22} atoms/cm³. Estimate the collision time τ for an electron in copper. [3]

Question Five [25 Marks]

(a) The Fermi energy for copper at temperature $T=300\,\mathrm{K}$ is $7.0\,\mathrm{eV}$. The electrons in copper follow the Fermi-Dirac distribution function. Find the probability of an energy level at $7.15\,\mathrm{eV}$ being occupied by an electron.

[3]

- (b) Metallic sodium crystallizes in body-centered cubic form, the length of the cube being 4.25×10^{-8} cm.
 - (i) Find the concentration, n, of conducting electrons.

[3]

(ii) Adopting the free-electron Fermi gas model for the conduction electrons, derive the following expression for the Fermi energy (at 0K):

$$E_F = \frac{\hbar^2}{2m_e} (3\pi^2 n)^{\frac{2}{3}} \; .$$

Hence show that it depends only on the concentration of conducting electrons, but not on the mass of the metal.

[8]

(iii) Calculate the value of E_F for metallic sodium.

[3]

(iv) Provide expressions for the Fermi temperature and the Fermi velocity in terms of E_F .

[4]

(c) Assuming that the energy dispersion of a band in a semiconductor can be expressed as $E = Ak^2$, where $A = 84.67 \,\text{Å}^2 \cdot \text{eV}$, calculate the electron effective mass in this band, in units of free electron rest mass m_0 .

[4]

END OF QUESTIONS

Physical Constants

Constant	Symbol	Value
Avogadro's number	N _A	$6.022 \times 10^{23} \mathrm{mol^{-1}}$
Elementary charge	е	1.602×10^{-19} C
Electron rest mass	$m_{\rm e}$	$9.109 \times 10^{-31} \text{kg}$
Proton rest mass	$m_{ m p}$	$1.673 \times 10^{-27} \text{kg}$
Neutron rest mass	m_{n}	$1.675 \times 10^{-27} \text{kg}$
Atomic mass unit (dalton)	amu (Da)	$1.661 \times 10^{-27} \text{kg}$
Gas constant	R	$8.315\mathrm{Jmol^{-1}K^{-1}}$
Boltzmann's constant	$k = R/N_A$	$1.381 imes 10^{-23} m J~K^{-1}$
Planck's constant	h	$6.626 \times 10^{-34} \mathrm{J s}$
	$h = h/2\pi$	$1.055 \times 10^{-34} \text{ J s}$
Standard acceleration of gravity	g	$9.807\mathrm{ms^{-2}}$
Speed of light	c_0	$2.998 \times 10^8 \mathrm{m s^{-1}}$
Faraday constant	$F = eN_A$	$9.649 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Permeability of the vacuum	μ_0	$4\pi \times 10^{-7} \mathrm{NA^{-2}}$ (exact)
Permittivity of the vacuum	$\varepsilon_0 = 1/\mu_0 c_0^2$	$8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{N}^{-1} \mathrm{m}^{-1}$

Conversion Factors for Non-SI Units

$1 \text{dyne} = 10^{-5} \text{N}$	$1\mathrm{eV} = 1.602 \times 10^{-19}\mathrm{J}$
$1 \text{bar} = 10^5 \text{ Pa}$	$1 \text{ eV/particle} = 96.48 \text{ kJ mol}^{-1}$
	, .
1 atm = 1.013 bar	$1 D = 3.336 \times 10^{-30} C m$
1 torr = 1/760 atm	$11 = 1 dm^3 = 10^{-3} m^3$
$1 \text{psi} = 6.895 \times 10^3 \text{Pa}$	$1\mathrm{cm}^{-1} = 1.986 \times 10^{-23}\mathrm{J}$
1 int. cal = 4.187 J	$hc/k = 1.438 \mathrm{cm}\mathrm{K}$
$1 \text{erg} = 10^{-7} \text{I}$	

Prefixes

pico $p = 10^{-12}$	kilo $k = 10^3$
nano $n = 10^{-9}$	mega $M=10^6$
micro $\mu = 10^{-6}$	giga $G = 10^9$
milli $m = 10^{-3}$	tera $T = 10^{12}$