UNIVERSITY OF ESWATINI

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2019/2020

TITLE OF PAPER:

QUANTUM MECHANICS II

COURSE NUMBER: PHY493

TIME ALLOWED:

THREE HOURS

INSTRUCTIONS:

ANSWER ALL QUESTIONS IN SECTION A AND ANY FOUR OUT OF

FIVE QUESTIONS IN SECTION B.

MARKS FOR EACH QUESTION ARE IN THE RIGHT HAND MARGIN.

THIS PAPER HAS 9 PAGES INCLUDING THE COVER PAGE AND FORMULA SHEET.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE CHIEF INVIGILATOR.

Section A

ANSWER ALL QUESTIONS IN THIS SECTION.

A1. Write down the adjoint of the following expression involving bras and kets, in which a_i are complex scalars, and $\hat{\Omega}$ and $\hat{\Lambda}$ are operators:

$$a_1^* |v\rangle + a_2 |w\rangle \langle p|q\rangle + a_3 \hat{\Omega} \hat{\Lambda} |r\rangle + a_4 \hat{\Lambda} |u\rangle$$

(3 marks)

A2. Consider an operator

$$\hat{A} = |\phi_1> <\phi_1| + |\phi_2> <\phi_2| + |\phi_3> <\phi_3| - i|\phi_1> <\phi_2| - |\phi_1> <\phi_3| + i|\phi_2> <\phi_1| - |\phi_3> <\phi_1|$$

where $|\phi_1\rangle$, $|\phi_2\rangle$ and $|\phi_3\rangle$ form a complete and orthonormal basis. Find the 3 x 3 matrix representation \hat{A} in the $|\phi_1\rangle$, $|\phi_2\rangle$, $|\phi_3\rangle$ basis.

(3 marks)

A3. Find the eigenvalues of the matrix in A2.

(3 marks)

A4. Is \hat{A} in A2. Hermitian?

(2 marks)

A5. Complete the table below to show the difference between Schrodinger Picture and Heisenberg

Picture:	Schrodinger Picture (moving/stationary)	Heisenberg Picture (moving/stationary)
State ket		
Observable		
Base ket		

(3 marks)

A6. Is $\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$ a pure or mixed state?

(3 marks)

A7. State Noether's theorem.

(3 marks)

Total = 20 marks

QUESTION 2

(a) Write down an expression for the most general state $(|\Psi\rangle_{AB})$ in a Hilbert space $V_A \otimes V_B$, where V_A and V_B are Hilbert spaces with orthonormal bases $\{|i\rangle_A\}$ and $\{|j\rangle_B\}$ respectively. Then give the condition for this general state to be separable and the condition for this state to be entangled.

(6 marks)

(b) Suppose that Alice has a single qubit sate $|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$ which she wishes to teleport to her friend Bob. To do this she creates an entangled state

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle$$

keeping the first (left) qubit and sending the second (right) qubit to Bob. Show that twice the product state $|\phi\rangle$ $|\Psi\rangle$ can be written as

$$2|\phi\rangle |\Phi\rangle = |B_0\rangle (\alpha |0\rangle + \beta|1\rangle) + |B_1\rangle (\alpha |1\rangle + \beta|0\rangle) + |B_2\rangle (\alpha |0\rangle - \beta|1\rangle) + |B_3\rangle (\alpha |1\rangle - \beta|0\rangle)$$

where

$$|B_0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), \qquad |B_1\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle),$$

$$|B_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle), \qquad |B_3\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle).$$

(8 marks)

(c) Now show that the operators

$$\hat{I} = |0\rangle \langle 0| + |1\rangle \langle 1|, \qquad \qquad \hat{X} = |0\rangle \langle 1| + |1\rangle \langle 0|$$

$$\hat{Y} = |0\rangle \langle 1| - |1\rangle \langle 0|, \qquad \qquad \hat{Z} = |0\rangle \langle 0| - |1\rangle \langle 0|$$

can be used to transform the single qubit parts of the product state above into $|\phi\rangle$. That is, show that

$$\hat{I}(\alpha|0\rangle + \beta|1\rangle) = |\phi\rangle, \qquad \qquad \hat{X}(\alpha|1\rangle + \beta|0\rangle) = |\phi\rangle,$$

$$\hat{Y}(\alpha|1\rangle - \beta|0\rangle) = |\phi\rangle, \qquad \qquad \hat{Z}(\alpha|0\rangle - \beta|1\rangle) = |\phi\rangle.$$

(6 marks)

(Total = 20 marks)

QUESTION 3

Consider a one-dimensional harmonic oscillator with mass m and frequency ω , i.e., a particle with Hamiltonian

 $H_0 = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 X^2 = \hbar\omega \left(a^{\dagger}a + \frac{1}{2}\right)$

where the annihilation operator is given by

$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(X + i \frac{P}{m\omega} \right).$$

The oscillator is initially, at time t=0, in the ground state $|0\rangle$. At time t=0, a parametric interaction is turned on, which changes the Hamiltonian to

$$H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 (1 + g\cos(2\omega t)) X^2$$

The parametric interaction modulates the resonant frequency at twice the resonant fre-quency. The strength of the modulation is characterized by the dimensionless constantg. The parametric interaction can be treated as a perturbation,

$$W(t) = \frac{1}{2}gm\omega^2 X^2 \cos(2\omega t)$$

on top of the unperturbed Hamiltonian H_0 . The state of the system at time t can be written in the energy-eigenstate (number) basis as

$$|\Psi(t)\rangle = \sum_{n=0}^{\infty} c_n(t) |n\rangle = e^{-i\omega t/2} \sum_{n=0}^{\infty} b_n(t) e^{-in\omega t} |n\rangle$$

We are interested in the state of the oscillator after the parametric interaction has been on for a time τ . Throughout the problem we are only interested in the secular (resonant) terms. These secular terms do not oscillate at frequency ω , and they dominate when $\omega \tau \gg 1$.

(a) Find the first-order secular contribution to the number-state amplitudes, i.e $b_n^{(1)}(\tau)$.

(5 marks)

(b) Find the second-order secular contribution to the number-state amplitudes, i.e $b_n^{(2)}(\tau)$.

(5 marks)

(c) Go to an interaction picture relative to H_0 . Find the interaction-picture Hamiltonian, make the rotating-wave approximation (i.e., keep only resonant terms), and integrate the result to find the interaction-picture evolution operator $U_I(\tau,0)$. Use this result to find the secular contributions to the amplitudes $b_n^{(1)}(t)$ and $b_n^{(2)}(t)$ to the same order as in parts (a) and (b). Your results should agree with those of parts (a) and (b).

(10 marks)

(Total = 20 marks)

QUESTION 5

Consider the field theory of a complex-valued scalar field obeying the Klein-Gordon equation. The action of this theory is

 $S=\int d^4x\left(\partial_\mu\phi^*\partial^\mu\phi-m^2\phi^*\phi
ight)$

(a) Find the conjugate momenta to $\phi(x)$ and $\phi^*(x)$ and the canonical commutation relations. Show that the Hamiltonian is

$$H = \int d^3x (\pi^*\pi + \Delta\phi^* \cdot \Delta\phi + m^2\phi^*\phi)$$

(10 marks)

(b) Diagonalize H by introducing creation and annihilation operators. Show that the theory contains two sets of particles of mass m.

(10 marks)

(Total = 20 marks)

General Relations

•
$$e^{\hat{A}}e^{\hat{B}} = e^{\hat{A}+\hat{B}}e^{[\hat{A},\hat{B}]/2}$$

•
$$e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + [\hat{A}, \hat{B}] + \frac{1}{2!}[\hat{A}, [\hat{A}, \hat{B}]] + \frac{1}{3!}[\hat{A}, [\hat{A}, [\hat{A}, \hat{B}]]] + \dots$$

$$\bullet \ e^{i\theta a^{\dagger}a}ae^{-i\theta a^{\dagger}a} = ae^{-i\theta}$$

•
$$[\hat{x},\hat{p}]=i\hbar$$

•
$$[a, a^{\dagger}] = 1$$

•
$$a |n\rangle = \sqrt{n} |n-1\rangle$$

•
$$a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$$

•
$$a^{\dagger}a \mid n \rangle = n \mid n \rangle$$

•
$$\Delta x \Delta p \leq \frac{\hbar}{2}$$
, $\Delta E \Delta t \leq \frac{\hbar}{2}$

•
$$\hat{A} |\psi_n\rangle = a_n |\psi_n\rangle$$
, $P_n(a_n) = \frac{|\langle \psi_n | \psi \rangle|^2}{\langle \psi | \psi \rangle}$

•
$$\hat{p} = i\sqrt{\frac{m\hbar\omega}{2}}(a^{\dagger} - a)$$

•
$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(a + a^{\dagger})$$

•
$$\langle x|\psi\rangle = \frac{1}{(2\pi)^{3/2}} \sum i^{\ell} (2\ell+1) A_{\ell}(r) P_{\ell}(\cos\theta), \quad A_{\ell} = c_{\ell}^{(1)} h_{\ell}^{(1)}(kr) + c_{\ell}^{(2)} h_{\ell}^{(2)}(kr)$$

•
$$h_{\ell}^{(1)} = j_{\ell} + i n_{\ell}, \ h_{\ell}^{(2)} = j_{\ell} - i n_{\ell}$$

•
$$j_{\ell}(x) = (-x)^{\ell} \left(\frac{1}{x} \frac{d}{dx}\right)^{\ell} \frac{\sin x}{x}, \quad n_{\ell}(x) = -(-x)^{\ell} \left(\frac{1}{x} \frac{d}{dx}\right)^{\ell} \frac{\cos x}{x}$$