UNIVERSITY OF ESWATINI FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

MAIN EXAMINATION, DECEMBER 2019

TITLE OF PAPER

: DIGITAL ELECTRONICS 1

COURSE NUMBER : PHY 411

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

: Answer FOUR (4) questions only.

: Each question carries 25 Marks

Marks for different sections are shown

in far right margin.

THIS PAPER HAS 5 PAGES, INCLUDING THIS ONE.

DO NOT OPEN THE PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

		i. Find the decimal equivalent of the number 11100.01 ₂ .	[2]
1.	(a)	1. Find the decimal equivalent of the same equivalent	[2]
		ii. Convert 34.75 ₁₀ to its binary equivalent.	[2]
	(b)	i. Find the decimal equivalent of the number $EBA.C_{16}$.	
	(~)	ii. Convert 204.125 ₁₀ to its corresponding hexadecimal number.	[2]
		i. Convert the hexadecimal number $1F.C_{16}$ to its binary equivalent.	[3]
	(c)	i. Convert the hexadecimal number 17.016 to the small of the boxedecimal equivalent.	[3]
		ii. Convert the binary number 10100111.111011 to its hexadecimal equivalent.	
	(d)	i. If the number 01001001 is in BCD, convert it to straight binary.	[3]
	(α)	ii. Convert the straight binary number 1001 ₂ to its Gray code equivalent.	[2]
		II. Convert the straight small shows himsey numbers. Show each step of your	working
	(e)	Subtract -23 from -53 using 2's complement binary numbers. Show each step of your	[6]
		clearly.	

Figure 1:

- (b) Draw a logic diagram for the Boolean expression $F = \bar{A}\bar{B} + AB$ using only 2-input NAND gates. [5]
- (c) Convert the following Boolean expressions to their standard SOP or minterm forms:

i.
$$F = \overline{(A + \bar{B} + \bar{C})(\bar{A} + B + \bar{C})};$$
 [4]
ii. $F = \overline{(A + \bar{B} + \bar{C})(\bar{A} + \bar{B} + \bar{C}) + (CB\bar{A})}.$

- 3. (a) Show two possible arrangements of the hardware-implementing of a four-input OR gate, using two-input OR gates only. [4]
 - (b) The truth table represented in Figure 2 below gives the output of F, for inputs A and B. What logic gate would perform this operation? Draw a symbol for this gate. [3]

A	В	F	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Figure 2:

(c) Apply suitable Boolean laws and theorems to modify the expression for a two-input EX-OR gate,

$$F = A \bigoplus B = A\bar{B} + B\bar{A}$$

in such a way as to implement a two-input EX-OR gate by using the minimum number of two-input NAND gates only. [7]

(d) Use AND, OR and NOT gates to construct a circuit that carries out the following function:[5]

$$F = \overline{(A\overline{B}C + \overline{AB})} + AC$$

(e) The logic diagram in Figure 3 performs the function of a very common arithmetic building block. Identify the logic function. [6]

Figure 3:

4. (a) State the procedures of logic function minimization using a K-map.

- [2] Man the
- (b) Given a logic function of three variables, $F(A, B, C) = \sum m(2, 4, 7) + \sum d(1, 3, 6)$. Map the function in a K-map and give the simplified Boolean expressions of F. [6]
- (c) Using the Karnaugh Map, simplify the Boolean function given by

$$F(A, B, C) = (A + B + C)(\overline{A} + B + \overline{C})(A + \overline{B} + C)$$

and the don't care condition expressed as $(\overline{A} + \overline{B})(\overline{A} + B + C)$.

[6]

(d) Use maxterms (not minterms) and a Karnaugh map to convert the Boolean expression,

$$y = C + A\overline{B} + B\overline{A}$$

into a canonical POS form.

[7]

(e) Write the simplified Boolean expression F(A, B, C) for the truth table shown below and draw its logic circuit. [4]

A	В	C	F
A	כג		
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- (a) Differentiate between a half and full Adder.
- [2]
 - (b) The truth table for a full subtractor is given in Figure 4.
 - i. Determine the Boolean expressions representing Difference and Bout. [3][3]
 - ii. Draw the logic diagram of a full subtractor using AND, XOR, OR and NOT gates.

Figure 4:

	INPUT	S	OUTPUTS	
Α	В	BIN	воит	Difference
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

(c) Draw a well labelled excitation table of a negative-edged JK Flip-flop.

- [2]
- (d) Sketch and label a timing diagram of the JK Flip-flop mentioned above.
- [2]

(e) Write the logic function for the output Q_{n+1} of the flip-flop.

- [1]
- (f) A 3-bit binary (MOD-8) down counter is shown in the Figure below.

Draw the timing diagram and the state sequence of the counter.

- [6]
- (g) Give any six different ways of basic data movement in a 4-bit shift register.
- [6]