UNIVESITY OF ESWATINI FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

Main Examination 2019/2020 COURSE NAME: Quantum Mechanics I COURSE CODE: PHY341/PHY342 TIME ALLOWED: 3 hours

ANSWER ANY FIVE QUESTIONS. ALL QUESTIONS CARRY EQUAL (20) MARKS

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

(a). Show that if \hat{A} , \hat{B} and \hat{C} are operators, then inj general

$$\left[\hat{\mathbf{A}}\hat{\mathbf{B}},\hat{\mathbf{C}}\right] = \hat{\mathbf{A}}\left[\hat{\mathbf{B}},\hat{\mathbf{C}}\right] - \left[\hat{\mathbf{A}},\hat{\mathbf{C}}\right]\hat{\mathbf{B}}.$$

[3 marks]

(b). Given that $[\hat{x},\hat{p}]=i\hbar$, compute $[\hat{x},\hat{p}^n]$ and $[\hat{p},\hat{x}^n]$.

[6 marks]

(c). If $V(\hat{x})$ is a function with a convergent Taylor expansion, $V(\hat{x}) =$ $\sum_{n=0}^{\infty} c_n \hat{x}^n$, show that

$$[\hat{p}, V(\hat{x})] = i\hbar \frac{dV(\hat{x})}{d\hat{x}}.$$

[4 marks]

- (d). For a simple harmonic oscillator, the ladder operators \hat{a} and \hat{a}^{\dagger} have the property that $[\hat{a}, \hat{a}^{\dagger}] = 1$. Compute
 - (i). $\left[\hat{a}^{\dagger}\hat{a},\hat{a}\right]$.

[2 marks]

(ii). $[\hat{a}^{\dagger}\hat{a}, \hat{a}^{\dagger}]$.

2 marks

(e). The Angular momentum operator \hat{L} has components \hat{L}_x , \hat{L}_y and \hat{L}_z , such that $\left[\hat{\mathbf{L}}_x, \hat{\mathbf{L}}_y\right] = i\hat{\mathbf{L}}_z$, $\left[\hat{\mathbf{L}}_y, \hat{\mathbf{L}}_z\right] = i\hat{\mathbf{L}}_x$, $\left[\hat{\mathbf{L}}_z, \hat{\mathbf{L}}_x\right] = i\hat{\mathbf{L}}_y$ and $\hat{\mathbf{L}}^2 = i\hat{\mathbf{L}}_y$ $\hat{\mathbf{L}}_x^2 + \hat{\mathbf{L}}_y^2 + \hat{\mathbf{L}}_z^2$. Compute

 $\left[\hat{\mathbf{L}}_z,\hat{\mathbf{L}}^2\right]$.

[3 marks]

Explain what was learned about quantization of radiation from the following experiments,

(a). The photo-electric effect.

[5 marks]

(b). Franck-Hertz experiment.

[5 marks]

(c). Compton scattering.

[5 marks]

(d). The black body radiation spectrum.

[5 marks]

Consider a Gaussian wave packet

$$\psi(x) = N \exp\left(i\frac{p_0}{\hbar}x - \frac{x^2}{2\sigma^2}\right)$$

(a). Find the normalization constant N.

[3 marks]

(b). Find the expectation values $\langle \hat{x} \rangle$ and $\langle \hat{x}^2 \rangle$.

[6 marks]

(c). What is the corresponding momentum space wave function $\psi(p)$?

[5 marks]

(d). Find the expectation values $\langle \hat{p} \rangle$ and $\langle \hat{p}^2 \rangle$,

[6 marks]

Question 4

A particle of mass m is confined to a one-dimensional region, $0 \le x \le a$, as shown in figure 1. At t = 0, its normalised wave function is

Figure 1:

$$\psi(x,t=0) = \sqrt{\frac{8}{5a}} \left[1 + \cos\left(\frac{\pi x}{a}\right) \right] \sin\left(\frac{\pi x}{a}\right).$$

(a). What is the wave function at a later time $t=t_0$?

[10 marks]

(b). What is the average energy of the system at t = 0 and at $t = t_0$?

[5 marks]

(c). What is the probability that the particle is found in the left half of the box, at $t = t_0$?

[5 marks]

(a). A quantum particle is in the state $|\psi,t\rangle$, which is a solution to the time-dependent Schrödinger equation, $i\hbar\frac{d}{dt}|\psi,t\rangle=\hat{H}|\psi,t\rangle$. Show that the expectation value of the time-independent operator \hat{O} satisfy

$$rac{d}{dt}raket{\psi,t}{\hat{O}}\ket{\psi,t} = rac{1}{i\hbar}raket{\psi,t}{\hat{O},\hat{H}}\ket{\psi,t}$$

[5 marks]

(b). State, with justification, whether each of the following sets of quantum numbers could be used to label a possible wave-function of the hydrogen atom.

[5 marks]

(i).
$$n = 1, \ell = 1, m_{\ell} = 1, m_s = \frac{1}{2}$$

(ii).
$$n = 3, \ell = 1, m_{\ell} = 2, m_s = 0$$

(iii).
$$n=4, \ell=1, m_{\ell}=-1, m_s=\frac{-1}{2}$$

(iv).
$$n=2, \ell=1, m_{\ell}=0, m_s=0$$

(v).
$$n=4, \ell=3, m_{\ell}=-1, m_s=\frac{1}{2}$$

(c). The following wave functions are energy eigenfunctions of the hydrogen atom.

$$\begin{split} \Psi_1(r,\theta,\phi) &= \frac{1}{\sqrt{32\pi a_0^2}} \left(2 - \frac{r}{a_0} \right) e^{\frac{-r}{2a_0}} \\ \Psi_2(r,\theta,\phi) &= \frac{1}{81\sqrt{\pi a_0^3}} \left(\frac{r}{a_0} \right)^2 e^{\frac{-r}{3a_0}} \sin\theta \cos\theta e^{-i\phi} \end{split}$$

(i). Deduce the quantum numbers n, ℓ , and m_{ℓ} for each wave function.

[5 marks]

(ii). Verify if $\Psi_1(r, \theta, \phi)$ is normalised and calculate the expectation value of the electron-nuclear separation in the hydrogen atom for this wave function.

[5 marks]

(a). A infinite cubical well ("or particle in a box") has a potential, defined in Cartesian 3D coordinates as

 $V(x,y,z) = egin{cases} 0, & ext{if } x,y,z ext{ are all between 0 and a} \\ \infty, & ext{otherwise} \end{cases}$

(i). What is the time-dependant Schrödinger equation for the particle inside the box

[3 marks]

(ii). Use the separation of variables ansatz $(\Psi(x, y, z) = X(x)Y(y)Z(z))$ to derive **three** separate ordinary differential equations for X, Y and Z in terms of K_x, K_y and K_z , where $E = \frac{\hbar^2}{2m}(K_x^2 + K_y^2 + K_z^2)$.

[3 marks]

(iii). Find solutions to the equations above. Apply the boundary conditions to show that

$$K_x a = n_x \pi$$

$$K_y a = n_y \pi$$

$$K_z a = n_z \pi$$

where $n_x, n_y, n_z = 1, 2, 3, ...$

[3 marks]

(b). Consider a step potential;

$$V(x) = \begin{cases} 0, & \text{if } x < 0 \\ V_0, & \text{if } x \ge 0 \end{cases}.$$

Consider the initial condition where a single particle of energy $E > V_0$ is incident from the left and no particle is incident from the right. Use

 $k=\frac{\sqrt{2mE}}{\hbar}$ and $l=\frac{\sqrt{2m(E-V_0)}}{\hbar}$ to show that the time-independent Schrödinger equation for region I and II are

$$\frac{\partial^2 \Psi_I(x)}{\partial x^2} + k^2 \Psi_I(x) = 0$$
$$\frac{\partial^2 \Psi_{II}(x)}{\partial x^2} + l^2 \Psi_{II}(x) = 0.$$

[3 marks]

Appendix

3

$$\int x^2 \sin(ax) dx = \frac{2x}{a^2} \sin(ax) + \left(\frac{2}{a^3} - \frac{x^2}{a}\right) \cos(ax)$$

$$\int x^2 \cos(ax) dx = \frac{2x}{a^2} \cos(ax) + \left(\frac{2}{a^3} - \frac{x^2}{a}\right) \sin(ax)$$

$$\int x^2 \cos^2(bx) dx = \frac{4b^3x + 3(2b^2x^2 - 1)\sin(2bx) + 6bx\cos(2bx)}{24b^3}$$

$$\int_0^\infty e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

- 5 $\int_0^\infty x^n e^{\frac{-x}{a}} dx = n! a^{n+1}$ for any non-negative integer, n.
- 6 Planck's constant $h = 6.663 \times 10^{-34} J \cdot s$
- 7 Dirac's constant $\hbar = 1.05 \times 10^{-31} J \cdot s$
- 8 Permittivity of vaccum $\epsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$
- 9 Ground state hydrogen energy $-E_1 = 13.6057eV$
- 10 Bohr energies $E_n = \frac{E_1}{n^2}$
- 11 Hydrogen ground state wavefunction $\Psi_0 = \frac{1}{\sqrt{\pi a^3}} e^{\frac{-r}{a}}$

Y_0^0	$\left(\frac{1}{4\pi}\right)^{\frac{1}{2}}$
Y_1^0	$\left(\frac{3}{4\pi}\right)^{\frac{1}{2}}\cos\theta$
$Y_1^{\pm 1}$	$\mp \left(\frac{3}{8\pi}\right)^{\frac{1}{2}} \sin\theta e^{\pm i\phi}$
Y_2^0	$\left(\frac{5}{16\pi}\right)^{\frac{1}{2}}(3\cos^2\theta - 1)$
$Y_2^{\pm 1}$	$\mp \left(\frac{15}{8\pi}\right)^{\frac{1}{2}} \sin\theta \cos\theta e^{\pm i\phi}$

Table 1: The first few spherical harmonics, $Y_l^m(\theta, \phi)$

R_{10}	$2a^{\frac{-3}{2}}e^{\frac{-r}{a}}$
R_{20}	$\frac{1}{\sqrt{2}}a^{\frac{-3}{2}}\left(1-\frac{r}{2a}\right)e^{\frac{-r}{2a}}$
R_{21}	$\frac{1}{\sqrt{24}}a^{\frac{-3}{2}}\left(\frac{r}{a}\right)e^{\frac{-r}{2a}}$
R_{30}	$\frac{2}{\sqrt{27}}a^{\frac{-3}{2}}\left(1-\frac{2r}{3a}+\frac{2}{27}\left(\frac{r}{a}\right)^{2}\right)e^{\frac{-r}{3a}}$
R_{32}	$\frac{4}{81\sqrt{30}}a^{\frac{-3}{2}}\left(\frac{r}{a}\right)^{2}e^{\frac{-r}{3a}}$

Table 2: The first few hydrogen radial wavefunctions, $R_{nl}(r)$