## 38

## UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

## SUPPLEMENTARY EXAMINATION, JANUARY 2020

TITLE OF PAPER

ELECTRONICS 1

COURSE NUMBER :

PHY 311

TIME ALLOWED

: THREE HOURS

INSTRUCTIONS

: Answer FOUR (4) questions only.

Each question carries 25 Marks

: Marks for different sections are shown

in far right margin.

THIS PAPER HAS 6 PAGES, INCLUDING THIS ONE.

DO NOT OPEN THE PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

1. (a) Define the following

59 [1]

(i) Intrinsic semiconductor

[1]

(ii) Doping

- [1]
- (iii) pn-junction.
  (b) Sketch a bridge rectifier and the output (without a smoothening capacitor) and explain how it works.
- (c) Assume that a smoothening capacitor C was connected across the load resistor of the bridge rectifier. With the aid of a schematic diagram of the variation of the output signal with time, show that the ripple voltage,  $V_r$  can be written as [7]

$$V_r = \frac{I_{av}}{2fC},$$

where  $I_{av}$  is the d.c. current and f is the frequency.

- (d) Modify the bridge circuit in (b) above to obtain a voltage doubler circuit and sketch the output signal if the input is sinusoidal. [4]
- (e) Consider the circuit in Figure 1.
  - (i) Using the Zener diode model, obtain the load line equation for the circuit.
- [4]

[2]

(ii) Sketch the I-V characteristics of the diode together with the load line.



Figure 1

- 2. (a) With the aid of a diagram(s) and characteristics, discuss the principle of operation of the n-channel JFET. [12]
  - (b) Write the equation relating the drain current,  $I_D$  in terms of  $V_{GS}$  of an n-channel JFET. [3]
  - (c) Sketch the small signal equivalent circuit of a common-source amplifier in terms of current dependent voltage source. [3]
  - (d) An n-channel JFET with a saturation current  $I_{DSS}=6mA$  and pinch-off voltage  $V_P=-6V$  is used in the self-bias circuit of Figure 2. Given that  $V_{DD}=12V$ ,  $R_D=1.5~\mathrm{k}\Omega$  and  $R_S=500\Omega$ , determine the operating point  $(I_D,V_{DS})$  and  $V_{GS}$ .



Figure 2: Self-bias circuit of a JFET

3. (a) What are semiconductor materials?

[2]

(b) Define energy gap of a semiconductor.

[1]

61

(c) Describe the dynamics of the formation of the depletion region.

- [6]
- (d) Sketch the charge density  $(\rho)$ , electric field (E), and electric potential (V) of a pn-junction. [3]
- (e) Describe the steps you would undertake to determine the conduction state of an ideal diode?[4]
- (f) The table below shows the I-V characteristics of a low voltage diode connected as shown in Figure 1.

| Forward voltage (V)    | 0 | 0.7 | 0.8 | 0.9 | 1  | 1.1 | 1.2 | 1.3 | 1.4 |
|------------------------|---|-----|-----|-----|----|-----|-----|-----|-----|
| Forward current $(mA)$ | 0 | 1   | 5   | 28  | 65 | 1   | 165 |     | 330 |



Figure 1: Low voltage diode

(i)Draw the I-V characteristics of the diode.

[2]

(ii) Determine the current flowing in the diode.

[4]

(iii) Calculate the value of the load resistor  $R_L$ 

[1.]

(iv) Calculate the power dissipated in both the diode and  $R_L$ .

[2]

62

4. (a) Consider an npn-transistor shown in Figure 2. Show that and  $\beta = \alpha/(1-\alpha)$ , where  $\alpha = I_C/I_E$  and  $\beta = I_C/I_B$ .



Figure 2: Biasing voltages of npn transistor

- (b) Sketch the I-V characteristics of the above transistor, indicating the operating regimes. [6]
- (c) Briefly explain the operating regions mentioned in (b) above. [4]
- (d) Define the hybrid parameters of the transistor in Figure 2 in terms of the d.c. currents and voltages . [2]
- (e) Describe how you would determine the hybrid parameters of a bipolar transistor from the input and output characteristics of the transistor. [6]
- (f) Draw the small-signal equivalent circuit of a bipolar transistor containing a current-dependent voltage source. [2]
- (g) A bipolar transistor with a forward current gain  $\beta = 100$  passes a collector current of 26mA. Estimate the input resistance of the transistor. [2]

- 5. (a) Consider the circuit of the basic common-emitter amplifier shown in Figure 3.
- 63

(i) State the uses of  $C_1$  and  $C_E$ .

[2]

(ii) Why are the resistors  $R_1$  and  $R_2$  included in the circuit?

[1]

(b) In Figure 3  $V_{CC}=12V,\,I_C=2mA,\,{\rm and}\,\,V_{BE}=0.65V.$ 



Figure 3: Common Emitter Amplifier

- (i) Calculate  $R_E$  when 1/10th of the supply voltage appears across it. [4]
- (ii) Calculate  $R_L$  when  $V_{CE} = V_{CC}/2$ . [4]
- (iii) Calculate  $I_B$  given that  $\beta = 100$ , [2]
- (iv) Determine the value of  $R_2$  when  $I_{R_2} = 10I_B$ . [4]
- (c) A Zener diode stabilizing circuit has an input voltage of 18 V and a diode current of 8 mA to give 10 V across a load resistor of 1200  $\Omega$ . Calculate
  - (i) the value of the series resistor. [5]
  - (ii) the diode current when the load resistor is 1000  $\Omega$ . [3]

END