UNIVERSITY OF ESWATINI

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION: 2018/2019

TITLE OF THE PAPER: NUCLEAR PHYSICS

COURSE NUMBER: PHY441

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- ANSWER ANY FOUR OUT THE FIVE QUESTIONS.
- EACH QUESTION CARRIES 25 MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- USE THE INFORMATION GIVEN IN THE ATTACHED APPENDIX WHEN NECESSARY.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

General Data:

1 unified mass unit (u) =1.6605 ×10⁻²⁷kg = 931.5 MeV/ c^2 Planck's constant $h=6.63^{-34}$ Js Boltmann's constant $k=1.38\times 10^{-23}JK^{-1}$ Avogardo's number 6.022×10^{23} (g-mole)⁻¹ speed of light (vacuum) $c=3.0\times 10^8$ m/s electron mass = 9.11×10^{-31} kg = 5.4858^{-4} u = 0.511 MeV/ c^2 neutron mass = 1.6749×10^{-27} kg = 1.008665 u = 939.573 MeV/ c^2 proton mass = 1.6726×10^{-31} kg =1.0072765 u =938.280 MeV/ c^2 1 year = 3.156^7 s nuclear radius, R $\cong r_0A^{1/3}$, where $r_0=1.2$ fm fine structure constant $\alpha=\frac{e^2}{4\pi\epsilon_0\hbar c}=1/137$ Planck constant $\hbar c=1.973\times 10^{-13}$ M eV· m

The table of nuclear properties is provided in the following page.

D	Vuclide	\overline{z}	A	Atomic mass (u)		Abundance or Half life
H	I	1	1	1.007825		99.985%
H	Iе	2	4	4.002603	0+	99.99986%
I	Ji	3	7	7.016003	3/2-	92.5%
_ F	Зе	4	11	11.021658	1/2 ⁺	$13.8s(\beta^{-})$
I	3	5	11	11.009305	$3/2^{-}$	80.2%
	7	6	12	12.000000	0+	99.89%
I I	1	7	15	15.000109	$1/2^{-}$	0.366%
1	1	7	18	18.014081	1-	0.63 s
<u>}</u>)	8	15	15.003065	$1/2^{-}$	122 s (e)
}-)	8	16	15.994915	0+	99.76%
-)	8	18	17.999160	0+	0.204%
<u> </u>	₹		18	18.000937	1+	110.0 min
ļ	Ve		20	19.992436	0+	90.51%
<u> </u>	Ne			21.991383	0+	9.33%
<u> </u>	Na		22	21.994434	3+	2.60 yrs
ļ	Mg	<u> </u>	22	21.000574	0+	3.86 s
I —	Al		27	26.981539	1	100.00 %
	Si	 	22	29.973770	0+	3.10%
L.	Si	1	32	31.974148	0+	105y
<u> </u>	P		30	29.978307	1+	2.50min
i	и Р	_	32	31.971725	1+	14.3d
	S		32	31.972071	0+	95.02%
<u>L</u>	Cl		37	36.965903		24.23%
<u> </u>	Ar	-	37	36.966776		35.0 d
<u></u>	K		37	36.973377	$\frac{3/2}{3/2^{-}}$	1.23 s
Ļ	· · · · · · · · · · · · · · · · · · ·		43	42.958766		0.135%
Ļ.	Ca C-	<u> </u>	43	46.954543		4.54 d (β ⁻)
\$-	Ca	-		46.952409		$3.35 \text{ d } (\beta^{-})$
	Sc		47		0+	91.8%
}	Fe	-	56	55.934439	0+	1.5My
L.	Fe		60	59.934078	5+	_ <u> </u>
}-	Co		60	59.933820	0+	5.27y 26.1%
	Ni		60	59.930788	0+	0.91%
	Ni		64	63.927968		
Į.	Ni		65	64.930086	$5/2^{-}$	
	Cu	_	63	62.929599	3/2	
•	Cu	-	64		1+	12.7 h
	Cu	<u> </u>	65		3/2	
	Zn		64		0+	48.6%
	Ru			103.905424	0+	18.7%
	Ru			5 104.907744		$+$ 4.44h (β^{-})
	Pd			5 104.905079		+ 22.2%
	Cs			7 136.907073	1 '	+ 30.2 y (β ⁻)
	Ba	_1_		7 136.905812		+ 11.2%
	Tl	8	1 20	3 202.972320		+ 29.5%
	Os	7	6 19	1 190.960920		$-15.4 \text{ d } (\beta^-) \%$
	Ir	7	7 19	1 190.960584		+ 37.3%
	Au	7	9 19	9 198.968254	3/2	+ 16.8%

Question 1: Shell Model

(a) The lowest energy levels in the Shell Model, in order of increasing energy are

 $1s_{1/2}, 1p_{3/2}, 1p_{1/2}, 1d_{5/2}, 2s_{1/2}, 1d_{3/2}, 1f_j, \dots$

(i) What are the possible values of j for the 1f levels.

[2 marks]

(ii) What is the value of j for the lowest 1f level? Justify your answer.

[2 marks]

(iii) Determine the spin and parity of the ground state of both the $^{40}_{20}Ca$ and $^{41}_{20}Ca$ nuclides.

[8 marks]

(iv) In the Shell model, a 'spin-orbit' interaction splits all the energy levels except the 's-type' levels. Why do the s-type levels remain unsplit?

[1 marks]

(b) The low-lying energy levels of ${}^{13}C$ are the ground state $(\frac{1}{2})$; 3.09MeV $(\frac{1}{2})$; 3.68MeV $(\frac{3}{2})$ and 3.85MeV $(\frac{5}{2})$. Interpret these states according to the shell-model.

[12 marks]

Question 2: Semi-Empirical Mass Formula

(a) Consider the Semi-Empirical Mass Formula (SEMF) that describes the binding energy of a nuclide with A nucleons and Z protons as

$$B(Z,A) = a_1 A - a_2 A^{2/3} - a_3 Z^2 A^{-1/3} - a_4 (Z - \frac{A}{2}) / A + \frac{(-1)^Z + (-1)^N}{2} a_5 A^{-1/2}.$$

Describe *briefly* the 'origin' of the various terms in the Semi-Empirical Mass Formula. Give physical reasons for their signs.

[10 marks]

(b) Using the SEMF find the expression for Z which minimizes the nuclei with a given value of A. (Hint: disregard for simplicity the last term in the SEMF)

[5 marks]

(c) Calculate the kinetic energy of the alpha particle emitted in the process $^{235}\text{U} \rightarrow \alpha + ^{231}\text{Th}$. The binding energy of the alpha particle is 28.3 MeV and you may assume the following values (in MeV) for the five coefficients in the semi-empirical expression for the binding energy of heavier nuclei: $a_1 = 15.5$; $a_2 = 16.8$; $a_3 = 0.72$; $a_4 = 23$; $a_5 = 34$.

[10 marks]

Question 3: Nuclear decay

- (a) A by-product of some fission reactors is ^{239}Pu which is an α -emitter with a half-life of 24,120 years. Consider 1 kg of ^{239}Pu at t=0.[Atomic mass of ^{239}Pu = 239.052163u].
 - (i) What is the number of ^{239}Pu nuclei at t=0?

[3 marks]

(ii) What is the initial activity?

[3 marks]

(iii) For how long would you need to store Plutonium until it has decayed to a safe activity level of 0.1 Bq?

[5 marks]

(b) In stars slightly more massive than the Sun, hydrogen burning is carried out mainly by the CNO cycle, whose first step is $p + {}^{12}_6 C \rightarrow {}^{13}_7 N + \gamma$. Estimate the energy of the gamma (in MeV), assuming the two initial nuclei are essentially at rest. Justify any simplifying assumptions you make. [Atomic masses: ${}^1_1H = 1.007825u, {}^{12}_6C = 12.000000u, {}^{13}_7N = 13.005739u$].

[4 marks]

- (c) Consider the nuclear fission reaction $n+^{235}_{92}U \rightarrow^{141}_{56}Ba+^{92}_{36}Kr+3n$.
 - (i) Calculate the energy released (in MeV) in the reaction. [Atomic masses: $^{235}_{92}U = 235.043915u$, $^{141}_{56}Ba = 140.9139u$, $^{92}_{36}Kr = 91.8973u$. The neutron mass is 1.008665u].

[4 marks]

(ii) You wish to run a 1000MW power reactor using $^{235}_{92}U$ fission. How much $^{235}_{92}U$ is required for one day's operation?

[6 marks]

Question 4 - General nuclear properties

(a)	Consider a simple phenomenological estimate for the dependence of the nuclear	radius r_n	on the
•	number of nucleons A ,		
	$_{\rm m}$ _ 1.9 $_{\rm A}1/3\epsilon_{\rm m}$		

 $r_b = 1.2A^{1/3} \text{fm}$

Explain briefly the physical reasons prompting this dependence.

[3 marks]

(b) Consider the two isotopes $^{15}_{8}$ O and $^{15}_{7}$ N. Compute their nuclear radius.

[2 marks]

(c) Explain which of the two isotopes $^{15}_{8}$ O and $^{15}_{7}$ N is supposed to be more stable.

[3 marks]

(d) Which is the most stable between a proton or an neutron?

[2 marks]

(e) Discuss the essential features of the strong force.

[3 marks]

- (f) Write a short note on the following
 - (i) Geiger-Muller counter
 - (ii) Scintillation detector

[6 marks]

(g) Discuss three typical β -decay processes.

[6 marks]

Question 5: Beta decay

- (a) The isotope $^{14}_{8}$ O is a positron emitter, decaying to an excited state of $^{14}_{7}$ N. The gamma rays from this latter have an energy of 2.313 MeV and the maximum energy of the positrons is 1.835 MeV. The mass of $^{14}_{7}$ N is 14.003074 u and that of the electron is 0.000549 u.
 - (i) Write the equation for the decay of the oxygen isotope and sketch an energy level diagram for the process.

[3 marks]

(ii) Given that one unified mass unit (u) is equal to 931.502 MeV/ c^2 find the mass of $^{14}_{8}$ O.

[6 marks]

(b) The daughter nucleus of a given alpha emitter has several accessible excited states and so the kinetic energy of an emitted particle can have one of several possible values. For a particular heavy nucleus these values in MeV are:

5.545; 5.513; 5.486; 5.469; 5.443; 5.417; 5.389.

It is also observed that the daughter nuclei produced emit gamma rays with one of the following energies (in keV)

26; 32; 43; 56; 59; 99; 103; 125.

Use this information to sketch a decay scheme indicating the energy levels and marking the gamma ray transitions. You may assume that the most energetic alpha particle leaves the daughter nucleus in its ground state.

[10 marks]

- (c) Given that the stable sodium isotope is $^{23}_{11}Na$, what type of radioactivity would you expect from
 - (i) ^{22}Na
 - (ii) ²⁴Na

[6 marks]