UNIVERSITY OF ESWATINI FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

MAIN EXAMINATION, DECEMBER 2018

TITLE OF PAPER

: DIGITAL ELECTRONICS 1

COURSE NUMBER : PHY 411

TIME ALLOWED

: THREE HOURS

INSTRUCTIONS

: Answer FOUR (4) questions only.

: Each Question carries 25 Marks

: Marks for different Sections are shown

in far Right margin.

THIS PAPER HAS 5 PAGES, INCLUDING THIS ONE.

DO NOT OPEN THE PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

- (a) Convert the hexadecimal number $2B6D.5AB_{16}$ to its equivalent decimal number. [3]
 - (b)Subtract $(-14)_{10}$ from $(-24)_{10}$, using the 2's complement representation. [6]
 - (c) State De Morgan's theorems. [2]
 - (c) Simplify the following expressions using Boolean algebra:
 - (i) $F = (X + \overline{Y} + \overline{X}.Y).\overline{Z}$ [5]
 - (ii) $F = \overline{X} \cdot Y(X + \overline{Y} + \overline{X} \cdot Y) \cdot (X + \overline{Y})$ [3]
 - (d) Indicate how a NAND gate can be used to implement:
 - (i) An Inverter. [2]
 - (ii) An AND gate. [2]
 - (iii) An OR gate. [2]
- (a) Explain what is meant by the following terms;
 - (i)Prime Implicant. [1]
 - (ii) Essential Prime Implicant. [1]
 - (iii) Distinguished 1-Cell. [1]
 - (b) Consider the logic function Y described by the truth table below.

Y	0	1	0	1	1	0	1	1	0	1	1	1	1	1	0	0
D	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
\mathbf{C}	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
В	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
A	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

- (i) Write this function in disjunctive normal form (DNF). [4]
- (ii) Simplify this expression by using a Karnaugh map.
- [8](c) Give the maxterm Boolean function expressed by 4

$$F(A,B,C) = \prod M(O,3,7)$$

(d) Using the Karnaugh Map, find a minimum sum-of-products expression for the following logic function [6]

$$F(W, X, Y, Z) = \sum m(0, 1, 3, 5, 14) + d(8, 15)$$

- (a) Show two possible arrangements of the hardware-implementing of a four-input OR gate, using two-input OR gates only.
 - (b) The truth table below gives the output F, for inputs A and B. What logic gate would perform this operation? Draw a symbol for this gate.

A	В	F
0	0	1
0	1	0
1	0	0
1	1	1

- (c) Apply suitable Boolean laws and theorems to modify the expression for a two-input EX-OR gate, $F = A \bigoplus B = A\overline{B} + B\overline{A}$ in such a way as to implement a two-input EX-OR gate by using the minimum number of two-input NAND gates only. [7]
- (d) Use maxterms (not minterms) and a Karnaugh map to convert the Boolean expression,

$$y = C + A\overline{B} + B\overline{A}$$

into a canonical POS form.

[7]

(e) Write the simplified Boolean expression F(A, B, C, D) for the Karnaugh map shown in Figure 1.

Figure 1:

- 4. (a) Explain what is meant by 'level triggering', 'negative-edged triggering' and leading-edge triggering of a flip-flop.
 - (b) Figure 2 is a logic diagram of a D-type flip-flop. Answer the following questions with reference to the figure;

Figure 2:

(i) What is the advantage of having a single input to the latch?	[2]
(ii) What is the function of the gate labeled N5?	[1]
(iii) Complete the table in Figure 3 for the various signals applied to the inputs.	[4]

Figure 3:

Input			Outpu clock	ts before the oulsed	Outputs after the clock pulsed		
D	S	R	Q	Q'	Q	Q'	
0	0	1	1	0			
0	0	1	0	1			
1	1	0	1	0			
1	1	0	0	1			

(c) Consider the D-flip-flops in the Figure 4 below and assume that the initial state of Q0, Q1, Q2, and Q3 are all logical zeros.

Figure 4:

(c) Describe the functions of the following elements of a microprocessor unit:	
(i) Data register (DR);	[1
(ii) Address register (AR);	[1
(iii) Arithmetic logic unit (ALU);	[1
(iv) Stack Pointer (SP).	[3
(e) Name five flag registers of the microprocessor and state how they work.	[5

END