UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2018/2019

TITLE OF PAPER

MATHEMATICAL METHODS FOR

PHYSICISTS

COURSE NUMBER

P272/PHY271

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE

QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS EIGHT PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P272/PHY271 MATHEMATICAL METHODS FOR PHYSICIST

Question one

A vector field \vec{F} expressed in cylindrical coordinates is given as $\vec{F} = \vec{e}_{\rho} \left(7 \rho^2 \cos(\phi) \right) + \vec{e}_{\phi} \left(9 \rho^2 \right) + \vec{e}_z \left(5 \rho z \right)$.

- (a) Evaluate the value of $\oint_L \vec{F} \cdot d\vec{l}$ if L is the circular closed loop of radius 3 on z=2 plane in counter clockwise sense and centered at $\rho=0$ & z=2, i.e., $L:\left(\rho=3\right),\ 0\leq\phi\leq2\pi$, z=2 & $d\vec{l}=+\vec{e}_{\phi}\ \rho\ d\phi\xrightarrow{\rho=3}\vec{e}_{\phi}\ 3\ d\phi$ (7 marks)
- (b) (i) Evaluate $\vec{\nabla} \times \vec{F}$ and show that $\vec{\nabla} \times \vec{F} = \vec{e}_{\phi} (-5z) + \vec{e}_{z} (27 \rho + 7 \rho \sin(\phi))$ (6 marks)
 - (ii) Evaluate the value of $\iint_S (\vec{\nabla} \times \vec{F}) \cdot d\vec{s}$ where S is bounded by L given in (a), i.e., $S: (0 \le \rho \le 3, 0 \le \phi \le 2\pi, z = 2 \& d\vec{s} = \vec{e}_z \rho d\rho d\phi)$ Compare this value with that obtained in (a) and make a brief comment. (6+1 marks)
- (c) Show that the given vector field satisfies the following vector identity that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) \equiv 0$ (5 marks)

Question two

- (a) Given a scalar function $f = 5 r^4 \sin(\theta) \sin(\phi)$ in spherical coordinates, by direct substitution show that it satisfies the following vector identity that $\vec{\nabla} \times (\vec{\nabla} f) \equiv 0$. (8 marks)
- (b) Given the following differential equation as:

$$\frac{d^2 y(x)}{d x^2} - \frac{d y(x)}{d x} - 2 y(x) = 0$$

Solve by using the power series method, i.e., setting

$$y(x) = \sum_{n=0}^{\infty} a_n x^{n+s}$$
 and $a_0 \xrightarrow{\text{set as}} 1$

- (i) Write down the indicial equations and recurrence relations. Deduce that $s = 0 \text{ or } 1 \text{ and } a_1 = \begin{cases} 1 & \text{for } s = 0 \\ \frac{1}{2} & \text{for } s = 1 \end{cases}$ (10 marks)
- (ii) For s = 0 case, set $a_0 = 1$ and use the recurrence relation to calculate the values of a_n up to the value of a_5 . Then write down this independent solution in its power series form truncated up to a_5 term. (7 marks)

Question three

Given the following non-homogeneous differential equation as

$$\frac{d x(t)}{d t} - 4 x(t) = 10 \sin(2t) \quad \cdots \qquad (1)$$

and also given the following initial condition that x(0) = 6,

- find its particular solution $x_p(t)$ and show that (a) $x_p(t) = -2\sin(2t) - \cos(2t)$ (5 marks)
 - For the homogeneous part of the given non-homogeneous differential (ii) equation, i.e., $\frac{dx(t)}{dt} - 4x(t) = 0$, by direct substitution show that its general solution is $x_h(t) = k e^{4t}$ where k is an arbitrary constant.

(2 marks)

- Write down the general solution of the given non-homogeneous differential (iii) equation in terms of the answers obtained in (a)(i) & (a)(ii). From the given initial condition, i.e., x(0) = 6, find its specific solution $x_s(t)$ and show that $x_s(t) = 7 e^{4t} - 2\sin(2t) - \cos(2t)$. (1+2 marks)
- Find the Laplace transform of x(t), i.e., $L\{x(t)\} \xrightarrow{set \ as} X(s)$, from the above (b) (i) given non-homogeneous differential equation and initial condition, deduce that $X(s) = \frac{6}{s-4} + \frac{20}{(s-4)(s^2+4)}$ (6 marks)
 - Convert X(s) in (b)(i) into its partial fraction and show that $X(s) = \frac{7}{s-4} - \frac{s}{s^2+4} - \frac{4}{s^2+4}$ (6 marks) $\frac{20}{(s-4)(s^2+4)} \xrightarrow{set \ as} \frac{k_1}{s-4} + \frac{k_2 \ s}{s^2+4} + \frac{k_3}{s^2+4}$
 - Take the inverse Laplace transform of X(s) in (b)(ii) to find the (iii) (3 marks) specific solution of x(t).

Question four

The longitudinal vibration amplitude u(x,t) of a given vibrating string of length 10 meters, fixed at its two ends, i.e., u(0,t) = 0 & u(10,t) = 0, and satisfies the following 1-D wave

equation
$$\frac{\partial^2 u(x,t)}{\partial t^2} = 25 \frac{\partial^2 u(x,t)}{\partial x^2} \quad \cdots$$
 (1)

(a) set u(x,t) = F(x)G(t) and apply the techniques of separation of variables to deduce the following two ordinary differential equations that

$$\begin{cases} \frac{d^2 F(x)}{d x^2} = \frac{k}{25} F(x) & \cdots \\ \frac{d^2 G(t)}{d t^2} = k G(t) & \cdots \end{cases}$$
 (2)

where k is a separation constant.

For our given problem, k needs to be any negative constant, explain briefly why?

(4+2 marks)

(b) Consider the following u(x,t) that

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) \qquad \text{where} \quad u_n(x,t) = E_n \sin\left(\frac{n\pi x}{10}\right) \cos\left(\frac{n\pi t}{2}\right) ,$$

- (i) by direct substitution, show that $u_n(x,t)$ satisfies the given 1-D wave equation eq.(1), (4 marks)
- (ii) show that $u_n(x,t)$ satisfies the two fixed conditions, i.e., $u_n(0,t) = 0$ & $u_n(10,t) = 0$, (2 marks)
- (iii) show that $u_n(x,t)$ satisfies the zero initial speed condition, i.e.,

$$\frac{\partial u_n(x,t)}{\partial t}\bigg|_{t=0} = 0 \quad , \tag{3 marks}$$

(iv) if the initial position of the vibrating string, i.e., u(x,0), is given as

$$u(x,0) = \begin{cases} 2x & for & 0 \le x \le 6 \\ -3x + 30 & for & 6 \le x \le 10 \end{cases},$$

find the values of E_n and show that

$$E_n = \frac{100}{n^2 \pi^2} \sin\left(\frac{3n\pi}{5}\right)$$
 where $n = 1, 2, 3, \cdots$

Also calculate the value of E_1 .

(9+1 marks)

Question five

Given the following equations for coupled oscillator system as:

$$\begin{cases} \frac{d^2 x_1(t)}{dt^2} = -14 x_1(t) + 4 x_2(t) \\ \frac{d^2 x_2(t)}{dt^2} = 5 x_1(t) - 6 x_2(t) \end{cases}$$

(a) set $x_1(t) = X_1 e^{i\omega t}$ & $x_2(t) = X_2 e^{i\omega t}$, deduce the following matrix equation $AX = -\omega^2 X \text{ where } A = \begin{pmatrix} -14 & 4 \\ 5 & -6 \end{pmatrix} & & X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ (4 matrix) (4 marks)

- find the eigenfrequencies ω of the given coupled system , (5 marks) (b)
- find the eigenvectors X of the given coupled system corresponding to each (c) (6 marks) eigenfrequencies found in (b).
- find the normal coordinates for the given coupled system, (7 marks) (d)
- write down the general solution of the given system. (3 marks) (e)

Useful informations

The transformations between rectangular and spherical coordinate systems are:

$$\begin{cases} x = r \sin(\theta) \cos(\phi) \\ y = r \sin(\theta) \sin(\phi) \\ z = r \cos(\theta) \end{cases} & \& \begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z}\right) \\ \phi = \tan^{-1} \left(\frac{y}{x}\right) \end{cases}$$

The transformations between rectangular and cylindrical coordinate systems are:

The transformations between rectangular and cylindrical coordinate systems are:
$$\begin{cases} x = \rho \cos(\phi) \\ y = \rho \sin(\phi) \end{cases} & \& \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \phi = \tan^{-1}\left(\frac{y}{x}\right) \\ z = z \end{cases}$$

$$\vec{\nabla} f = \vec{e}_1 \frac{1}{h_1} \frac{\partial f}{\partial u_1} + \vec{e}_2 \frac{1}{h_2} \frac{\partial f}{\partial u_2} + \vec{e}_3 \frac{1}{h_3} \frac{\partial f}{\partial u_3} \\ \vec{\nabla} \bullet \vec{F} = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial (F_1 h_2 h_3)}{\partial u_2} - \frac{\partial (F_2 h_2)}{\partial u_3} \right) + \frac{\vec{e}_2}{h_1 h_3} \left(\frac{\partial (F_1 h_1)}{\partial u_3} - \frac{\partial (F_3 h_3)}{\partial u_1} \right) + \frac{\vec{e}_3}{h_1 h_2} \left(\frac{\partial (F_2 h_2)}{\partial u_1} - \frac{\partial (F_1 h_1)}{\partial u_2} \right)$$
where $\vec{F} = \vec{e}_1 F_1 + \vec{e}_2 F_2 + \vec{e}_3 F_3$ and
$$(u_1, u_2, u_3) \quad \text{represents} \quad (x, y, z) \quad \text{for rectangular coordinate system}$$

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) \quad \text{represents} \quad (\vec{e}_\rho, \vec{e}_\phi, \vec{e}_\rho) \quad \text{for spherical coordinate system}$$

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) \quad \text{represents} \quad (\vec{e}_\rho, \vec{e}_\phi, \vec{e}_\phi) \quad \text{for rectangular coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{represents} \quad (1, \rho, 1) \quad \text{for rectangular coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{represents} \quad (1, \rho, 1) \quad \text{for rectangular coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{represents} \quad (1, \rho, 1) \quad \text{for rectangular coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{represents} \quad (1, \rho, 1) \quad \text{for rectangular coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{represents} \quad (1, \rho, 1) \quad \text{for rectangular coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{represents} \quad (1, \rho, 1) \quad \text{for spherical coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{represents} \quad (1, \rho, 1) \quad \text{for spherical coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{represents} \quad (1, \rho, 1) \quad \text{for spherical coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{represents} \quad (1, h_2, h_3) \quad \text{for spherical coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{represents} \quad (1, h_2, h_3) \quad \text{for spherical coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{represents} \quad (1, h_2, h_3) \quad \text{for spherical coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{for spherical coordinate system}$$

$$(h_2, h_2, h_3) \quad \text{for spherical coordinate system}$$

$$(h_1, h_2, h_3) \quad \text{for spherical coordinate system}$$

$$(h_2, h_2, h_3) \quad \text{for spherical coordinate system}$$

$$(h_3, h_4, h_4, h_4,$$

$F(s) = L\{f(t)\}$	f(t)
1/s	1
$1/s^2$	t
$1/s^n n=1,2,3,\cdots$	$t^{n-1}/(n-1)!$ $n=1,2,3,\cdots$
1/(s-a)	e at
$1/(s-a)^2$	e ^{at} t
$1/(s-a)^n$ $n=1,2,3,\cdots$	$e^{at} t^{n-1}/(n-1)!$ $n=1,2,3,\cdots$
F(s-a)	$e^{at} f(t) = s - shift theory$
$1/(s^2 + \omega^2)$	$\sin(\omega t)/\omega$
$s/(s^2 + \omega^2)$	$\cos(\omega t)$
$1/(s^2-a^2)$	$\sinh(at)/a$
$s/(s^2-a^2)$	$\cosh(at)$
e^{-as}/s $a>0$	u(t-a) $a>0$
$e^{-as} F(s) a > 0$	f(t-a)u(t-a) $t-shift theory$
F(s)G(s)	$h(t) = (f * g)(t) = \int_{\tau=0}^{t} f(\tau) g(t-\tau) d\tau$
	$= \int_{\tau=0}^{\prime} f(t-\tau) g(\tau) d\tau convolution \ theory$

where $u(t-a) \equiv \begin{cases} 0 & \text{if} \quad t < a \\ 1 & \text{if} \quad t > a \end{cases}$ is an unitary step function & its Laplace transform is $L\{u(t-a)\} = \int_{t=0}^{\infty} u(t-a)e^{-st} dt \quad \text{where} \quad s > 0$ $= \int_{t=0}^{a} (0)e^{-st} dt + \int_{t=a}^{\infty} (1)e^{-st} dt$ $= 0 + \left(-\frac{1}{s}e^{-st}\right)\Big|_{t=a}^{\infty} = \left(-\frac{1}{s}e^{-st}\right)\Big|_{t=0}^{\infty} = (0) - \left(-\frac{1}{s}e^{-sa}\right) = \frac{1}{s}e^{-sa}$ $L\{y'(t)\} = -y(0) + sL\{y(t)\}$ $L\{y''(t)\} = -y'(0) - sy(0) + s^2L\{y(t)\}$