UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION, 2017/2018

TITLE OF PAPER

: ELECTRONICS II

COURSE NUMBER : PHY 312

TIME ALLOWED

: THREE HOURS

INSTRUCTIONS

: Answer FOUR (4) questions only.

: Each Question carries 25 Marks

: Marks for different Sections are shown

in far Right margin.

THIS PAPER HAS 6 PAGES, INCLUDING THIS ONE.

DO NOT OPEN THE PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

1. (a) Design a filter with the transfer function of

$$H(j\omega) = \frac{-3}{1 + j\omega/5000}$$

and a minimum input impedance of 50 k Ω

[7 (b) Consider the RLC bandpass filter shown in Figure 1.

- i. Derive an expression for $|H(j\omega)|$ of this filter. [3]
- ii. Derive the expression for the resonant frequency. [2]
- iii. Calculate the value of the resonant frequency? [2]
- iv. What is the Q-factor? [2]
- v. Find the cut-off frequencies, f_1 and f_2 . [8]
- vi. Find the bandwidth. [1]

Figure 1: RLC band pass filter

- 2. (a) With the aid of a circuit diagram and appropriate equations, explain how you would measure the input resistance of an amplifier. [5]
 - (b) Consider an RC low-pass filter with component values $R=10.61~\mathrm{k}\Omega$ and $C=0.015~\mu F$.
 - i. Find the cut-off frequency of the filter, in Hertz. [2]
 - ii. Find $[v_o]$ when v_i has a frequency 500 Hz, 1 kHz, and 2 kHz. [7]
 - iii. Using the values of v_o calculated in (ii), sketch v_o versus frequency. [3]
 - (e) i. Calculate V_{cal} as a function of time for the circuit shown in Figure 2, given that $V_{in} = A \sin \omega t$. A = 500 mV and $\omega = 100 \text{ rad.s}^{-1}$. [4]
 - ii. Sketch graphs of V_{out} and v_{in} against time. [4]

Figure 2: Differentiator Amplifier

3. (a) What is a multivibrator?

[2]

(b) Draw the circuit diagram of an astable Multivibrator.

- [2]
- (c) Explain how the astable multivibrator works and assume that when the d.c. power supply is switched on, current rises faster in transistor T_1 in relation to transistor T_2 . The d.c. supply voltage is 9 V. [11]
- (d) Sketch the waveforms observed at the base and collector of transistor T_1 to show how the voltage varies with time. [2]
- (e) i. Write an expression for the frequency of oscillation of a phase shift oscillator that is designed using a BJT amplifier and a phase-shift ladder network. The ladder network is made up of equal resistors and equal capacitors. [2]
 - ii. Consider each of the capacitors to have a fixed capacitance $C = 0.01 \ \mu F$ whilst each of the resistances can be varied from $2 \ k\Omega$ to $200 \ k\Omega$. Calculate the minimum and maximum frequencies which can be generated by the oscillator.
 - iii. Explain why the open-loop gain of the amplifier used in the phase shift oscillator must be of magnitude ≥ 29 . [3]

4. (a) i. What is meant by negative feedback? [2]ii. State the Barkhausen condition necessary for oscillation to occur. [2](b) State the advantages of negative feedback for an amplifier. [5](c) An amplifier has an open-loop gain of magnitude A_o . A fraction β of its output voltage signal is fed back to the input of the amplifier so as to subtract from the input. Using a suitable diagram, derive an expression for the overall voltage gain A, with feedback. [6] (d) An amplifier has an open-loop gain of -500 and a feedback factor of 0.2. i. What is the loop gain? [1]ii. Find the voltage gain with feedback. [2]iii. Determine the percentage fall in the gain with feedback if the open-loop gain

[7]

of the amplifier falls by 20%.

- 5. (a) i. Sketch the circuit diagram of a an operational integrator.
 - ii. Derive equation below which describes the relationship between the input and output voltages, V_{in} and V_{out} of the integrator. [6]

$$V_{out} = -\frac{1}{RC} \int V_{in} dt$$

[3]

(b) Use operational amplifiers and appropriate components to design a circuit which corresponds to the following ideal relationship between the output voltage, v_{out} and the input voltages, v_r , v_1 and v_2 (Assume same value of resistance in your design, $R = 10 \text{k}\Omega$):

$$v_{out}(t) = 3x10^{-4} \frac{dv_1}{dt} - \int (v_1 - v_2)dt$$

END