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P272IPHY271 MATHEMATICAL METHODS FOR PHYSICIST 


Question one 

(a) Given the following relations between the unit vectors of cylindrical, spherical and 
Cartesian coordinate systems as 


ep =ex cos(¢)+ey sin(¢) 
 cos(e)
& 

sin(e) 

and deduce the following: 


(I') d e~ - d ¢' f I' d' I ' 


{e~ = ex sin(¢)+ ey cos(¢) 

-- e - In tenus 0 cy In rIca umt vectors; (3 marks)
dt p dt 

(ii) d = _ e. sin(e) d ¢ _ cos(e) d in tenus of spherical unit 
dt dt dtI 

(b) 

vectors, 

Given F 

(4 marks) 

f1~:2, L F. d [ if PI: ( 0 , 0 , 2) , P2 : ( 3 , 9 , 2) and 

(i) L : a straight line from PI to P2 on z = 2 plane, 
(6 marks) 

(ii) L : a cubic curved path y 

Compare this answer with that obtained in (b)(i) and comment on the conservative 
nature of the given vector field, ( 7 + 1 marks) 

(iii) Find Vx F . Does this answer in agreement with the comment in (b)(U) ? 

(3 + 1 marks) 

2 plane, 
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Question two 

Given a vector field F ~2 cos(e))+ eo (2r2)+ e¢ (- 3 r2 cos(¢)) in spherical coordinates, 

(a) 	 find the value of fs F. d s if S = S] + S2 where 

; ::; e ::; JT ,0 ¢::; 2 JT & d s = e,. r 2 si~ e de d ¢ l 
--'--"--') e r 25 sin e de d ¢ 

, 0,;; r ,;; 5 , 0,;; ¢ ,;; 2" & d S 0 r r sin 0 d r d ¢ l 
eo r dr d¢ J 

I.e., S is a lower-half semi-spherical closed surface centered at the origin with a radius 
of 5 ( 10 marks) 

(b) (i) Evaluate V. F and show that 

V • F = 4 r cos(e) + 2 r cot(e) + 3 r s~n((¢)) 	 ( 4 marks) 
sm e 

(ii) Find the value of ffL (V. F)dv where V is bounded by S given in (aj, i.e., 

V: 0 ::; r ::; 5 , JT ::; e ::; JT , 0::; ¢ ::; 2 JT & d v r 2 sin e d r de d ¢ . 
2 

Compare this answer to that obtained in (aj and make a brief comment. 
(10+ 1 marl\:s) 
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Question three 

Given the following Bessel's differential equation as: 

2 d 2 y(x) dy(x) (2
X 2 +x +x 4)y(x) = 0 

dx dx 
if) 

Solve by using the power series method, i.e., setting y(x) '" a x"+x and ao;;t; 0~ 11 

11=0 

(a) Write down the indicial equations. Deduce that s - 2 or + 2 and a] O. 

(9 marks) 
(b) Write down the recurrence relation. For s = - 2 or + 2, set ao 1 and use the recurrence 

relation to calculate the values of an up to the value of a6 • Thus write do\Vll two 

independent solution in their power series forms and show that one of the series solutions 
is a divergent series and the other is linearly dependent to the well.;.known Bessel's function 

. . ()( 1 2 1 4 1 6 1 8 )ofthefirstkmd oforder 2 I.e. J x == - x ~ x + -- x - x + ....... 

, '2 8 96 3072 184320 

(12+4 marks) 
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Question four 

An elastic string of length 9 is fixed at its two ends, i.e., at x 0 & x =9 and its 

transverse deflection u(x ,t) satisfies the following one-dimensional wave equation 

u(x,t) = 4 82 u(x,t) 
at 2 8 . 

(a) 	 Set u(x,J) = F(x) G(t) and use separation scheme to deduce the following ordinary 

differential equations: 
2 

d F(x) = k F(x) 

d x 2 


d 2 G(t) 
4 k G(t) 

where k is a separation constant. 

In view of the given boundary conditions, k should be a negative constant, i.e., k < 0 , 


explain briefly why? ( 4+1 marks) 


(b) 	 By direct substitution, show that. u(x,t) = IE" sin( nJr x) cos(2 nJr t) 
n I ,,9 \ 9 

where 	 En n 1,2,3", .... are arbitrary constants, satisfies two fixed end conditions, 

i.e., u(O, t) 0 = u(10, t) , as well as zero initial speed condition, i.e., 8 8 t t)! = 0 
I ~ 0 

(7 marks) 
(c) 	 Then find E" in terms of n ifthe initial position of the string, i.e., u(x, 0) ,is given 

as u(x, 0) lr2 x if O:-s; x:-S; 3 
-x+9 if 3:-s;x:-S;9 

9 l( nJr x) (mJr x) {O if n,* m ( hint: sin -- sin -- d x = 9 	 &JX;O 	 9 - {f m9 n = 
2 

9Jx sin( n; x) d x = n28~2 Sin( n; x) xcosl--f nJrx ) ) 
n Jr 9 

Thus calculate the values of E1 , E2 and (10+3 marks) 
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Question five 

Given the following non-homogeneous difIerential equation as 

d xCt) + 6 d + 13 x(l) 10 e- 4t + 15 sin(t) , 

dt dt 


(a) find its particular solution xpCt) and show that 

X p (I)=2e- 4t +sin(t)-~cos(t) . (9 marks)
2 

(b) Find the general solution (t) for the homogeneous part of the given differential xh 


2 

. . d x(t) 6 d x(t) 13 () 0equatIOn, I.e., . 7 + --+ x t = . (6 marks)

dr dt 

(c) Write down the general solution of the given non-homogeneous differential equation 

d 
Xg (t). If the initial conditions aIe given as x(O) = - 3 & = 5 , find its 

=0 

specific solution XI (t) . (1+9 marks) 
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Useful informations 
The tranSf0D11ations between rectangular and spherical coordinate systems are: 

x r sinCe) cos(¢) 


y = r sinCe) sin(¢) & 


Z = r cos(e) 


¢=tan I(Y\I 

x) 

The transformations between rectangular and cylindrical coordinate systems are: 

p=~X2 +y2x p cos(¢) 


y p sin(¢) & 
 ¢ tan I(;J 

z z Z=Z 

1 of _ 1 _ 1 of
f/f e -- + e + e -- ­l hi OU) 2 	 h2 3 h} oUoU2 	 3 

1 r0 (~ h2 hJ + 0(F2 h) h)) + _0-'--"--'---=-:..V'e 
hi h2 h3 \ 	 oU I oU2 oU3 

0(F3 h}) _ 0 + ~ _0-,--,---,-,,­V'x [h2 h} oU2 oU 3 hi h3 OU} 

+~(0(F2 h2) _ o(~ hl)i 
h] h2 louIOU 2 J 

where =e] FI + e2 F2 + F1 and 

(u] 'U 2 ' uJ 	 represents (x, y, z) for rectangular coordinate system 

represents (p,¢,z) for cylindrical coordinate system 

represents (r,e,¢) for spherical coordinate system 

(e] ,e2 , e}) 	 represents {ex, ey ,eJ for rectangular coordinate system 

represents {ep,e¢ ,eJ for cylindrical coordinate system 

represents (e,.,eg,e¢) for spherical coordinate system 

(hI' h2 ' h}) 	 represents (1,1,1) for rectangular coordinate system 

represents (1 , p, 1) for cylindrical coordinate system 

represents (1, r ,r sinCe») for spherical coordinate system 
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