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P272IPHY271l\1ATHEMATICAL METHODS FOR PHYSICIST 

Question one 

(a) 	 Given a scalar function in spherical coordinates as f = r2 sin(e) cos(¢) , 

(i) 	 find the value of V f at a point P ( 3 , 90° , 45°) , ( 4 marks ) 

(ii) 	 find the value of the directional derivative of f at a point 

P (3,90° , 45°) along the direction of A (= e 2 + eo + e¢ 2) .r 

(3 marks) 

(b) 	 Given a vector field in Cartesian coordinates as F =ex (y 2) + ey (2 x y) + (3 z2) , 
fmd the value of the line integral fP, 

Fj,L 

and 
(i) 	 L : a straight line from PJ to P2 on x y plane, i.e., Z = 0 plane. 

(6 marks) 
(ii) 	 L : a parabolic path described by y + 2 from PJ to P2 on x - y plane. 

Compare this answer with that obtained in (b)(i) and comment on whether the given 

F is a conservative vector field or not. . ( 7+ 1 marks ) 
(iii) 	 Find V x F . Does this result agree with the comment you made in (b)(ii)? 

(3+1 marks) 
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Question two 

A vector field F expressed in cylindrical coordinates is as 

e p (3 p2)+ e¢ (2p z)+ ez (Z2 cos(¢)) 

(a) 	 (i) Evaluate the value of fL •d I if L is the pircular closed loop of radius 5 

on z = 2 plane in counter clockwise and centered at p =0 & z =2 , i.e., 

L : (P=5 , 	O~¢~2JT ,z 2 & dl +e¢ pd¢ p=5) e¢ 5d¢) 

(7 marks) 

(ii) 	 Evaluate the value of IL (~x F). d s where S is bounded by L given in 

(a)(i) , i.e., 
s: (O~p~5, O~¢:5.2JT, z=2 & ds =e" pdpd¢) 
Compare this value with that obtained in (a)(i) and make a brief corrurient. 

(12+1 marks) 
(b) 	 Show that the given vector field satisfies the following vector identity that 

V.(~xF)=O (Smarks) 
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Question three 

Given the following non-homogeneous differential equation as d 
2 

x~t) + 5 x(t) = J(t) , where 
d t­

fU) is a periodic driving force of period 20 ,i.e., f(t) = f(t + 20) = fCt + 40) = ....... , and its 

first period description is 
t for O:s; t :S; 5 
t + 10 for 5:s; t :S; 15 

f(t) = t 20 for 15:S; t;S; 20 

o for t 2 20 

and is plotted for the first two period, i.e., for O;s; t ;S; 40 ,as the diagram below 

"" (n:rct\ (n:rct\00

(a) Set f(t) = ao + Lan cos -I + Lbn sin -I . 
n=l \ 10) n 1 10 J 

Ci) One can conclude without calculation that an 0 \j nO,1,2,··· based on a 

special character of our given f(t). What is that special character? ( 1 marks) 

b and show thatn(ii) Find the Fourier sine series coefficients 

\j n l,2,3,·· (12 marks) 

Thus the Fourier series representation of the given periodic function is 

20 (sin(~) sin(~)J 
ro 2 2. (n:rct) ()f ()t =L ? 2 sm --~! . . .. . . 1 

n:) n- :rc 10 ) 

Cb) Find the particular solution of the given non-homogeneous differential equation xpCt) 

and show that 

( n:rc ~ l( 3 n :rc)J ' 
'" 2000 (sinlTj - sin -2- . (n:rc t) 

(12 marks)xp (t) = ~ n2 :rc 2 (n 2 :rc 2 _ 500) Sl\10 
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Question four 

(a) Given the following 2-D Laplace equation in spherical coordinates as 

\721{r,e)=0 1 ~o (1'2 OI{r,e)J+ ,~ 0 	(Sin{e)OI{r,e)) 
r or or r" sm{e) oe oe 

(i) Set l{r ,e)= F{r) G{e) and use separation variable scheme to separate the 

above partial differential equation into the following two ordinary differential 
equations. 

d (1'2 d{F{r))I=kF{r) (1) 
dr \ dr) 

_1_ ~ (sin{B) d{G{e))J + kG{e) 0 ...... (2) 
sin{e) de dB 

where 	 k is a separation constant. ( 5 marks ) 
(ii) 	 Set x == cos{e) & G{e) == y{x), show that eq. (2) can be transformed to the 

following differential equation: 

(1 x2)d
2y

{x) 2x dy(x)+ky{x) 0······ (3) (3 marks)
dx 2 dx 

2 
(b) 	 If k =12 , eq.(3) in (a)(ii) becomes (1- X2) d y~x) _ 2 x d y{x) + 12 y(x) O. 

dx dx 

'" 
Set y(x) L an xn+s & ao:F 0 and utilize the power series method, 

n 0 

(i) write down its indicial equations and show that s =0 or 1 and = 0 .a1 

(7 marks) 
(ij) For s =1 independent solution, named as Y2 (x) ,write down its recurrence 

relation. Set ao 1 and use the recurrence relation to generate Y2(X) in power 

series form truncated up to a6 term. ( 7 marks) 

(iii) Show that Y2 (x) is linearly dependent to one of the well-known Legendre 

polynomial P3 (x) (== %x3 ~ x) . 	 (3 marks) 
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Question five 

Two simple harmonic oscillators are joined by a spring with a spring constant kl2 as shown in the 

diagram below: 

The equations of motion for this coupled oscillator system ignoring friction are given as 
, d 2 (t) 
Inl 2 = - (kl + k 12 ) Xl (t) + kl2 X 2 (t)


dt 

d 2 (t) 

m2 =kl2 Xl (t) - (k2 + k 12 ) X 2 (t)

d 


where XI & are horizontal displacements of In) & 1n2 measured from their respective X 2 

resting positions. 

If given Inl = 3 kg , 1n2 = 6 kg , k] 6 N k2 =12 N & kll =6 N 
m m m 

(a) 	 Set Xl (t) =: Xl ei 
a)/ & X2 (I) X 2 • Then the above given equations can be deduced to 

the following matrix equation A X - a/ X where 

- 4 
A= _2J & X (;:) . 	 (5 marks)

( 1 

(b) 	 Find the eigenfrequencies ()) of the given coupled system. (6 marks) 
(c) 	 Find the eigenvectors X of the given coupled system cOlTesponding to each 

eigenfrequencies found in (b) . ( 6 marks ) 
(d) 	 Write down the general solutions for Xl (t) & Xl (t) . ( 2 marks ) 

(e) 	 Find the specific solutions for Xl (t) & Xl (t) if the initial conditions are given as 

Xl (0) =1 , x
2 
(0) 2, 0 & d X 2 (t) = 0 ( 6 marks ) 

dt 
[;0 
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Useful informations 
The transfonnations between rectangular and spherical coordinate systems are : 

X =r sinCe) cos(¢) 

y = I' sinCe) sin(¢) & 
{ 

Z = I' cos(8) 

The transfonnations between rectangular and cylindrical coordinate systems are : 

X = p cos(¢) 

y = p sin(¢) & 
{ 

Z=Z Z=Z 

(u
where F =e1 F; + e2 F2 + e3 F3 

l , u2 , u 3 ) represents 

represents 

and 

(x, y, z) for rectangular coordinate system 

(p,¢,z) for cylindrical coordinate system 

(e
represents (r , e,¢) for spherical coordinate system 

l , e2 , e3 ) represents (ex, ey , ez ) for rectangular coordinate system 

represents (ep , e¢ ,ez) for cylindrical coordinate system 

represents (er , ee ,e¢) for spherical coordinate system 

represents (1,1,1) for rectangular coordinate system 

represents (1 , p ,1) for cylindrical coordinate system 

represents (1 , I' , r sinee)) for spherical coordinate system 

f(t) = f(t + 2 L) = f(t + 4 L) =... = fan cos[n J[ t) + f bl1 sin[n J[ t) where 
n=O L 17=1 L 

a
O 

=_1 f2Lf(t)dt, an =~f2Lf(t)cos[nJ[t)dt & bl1 =~f2Lf(t)sin[nJ[t)dt for n=1,2,3,··
2L 0 L 0 L L 0 L 


. (k )) d t cos(k t) sin(k t)

f (t S111 t t = - k + k 2 

t sin(k t) cos(k t) 
f (t cos(k t)) d t = k + e 
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