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P272 MATHEMATICAL METHODS FOR PHYSICIST 


Question one 

\ 

Given F= ) in cylindrical coordinates, 

(a) find the value of 1. F. d s if S is the closed surface enclosing the cylindrical tube 

of cross-sectional radius a and tube height h ,i.e., S S1 + + S3 where 

SI (z = 0 0 s p saO S ¢ S 2 rc & d s = pdp d ¢ ) 

(p a, Os s2rc, Oszsh & ds= pd¢dz---I:.~~ep ad¢dz) 

The chosen closed surface S is shown in the diagram below: 

';' 
(.l1

,~~
I~ 
ri '--,___ '~.../ I 

' 

k rl
1'--0
I 3 1 
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(12 marks) 

(b) (i) find V. F (4 marks) 

(ii) then evaluate the value of fII (V. F) d v where V is bounded by S given 

in (a), i.e., V: Ospsa, Os¢s2rc , Oszsh & dv pdpd¢dz 

Compare this value with that obtained in (a) and make a brief comment. 

(9 marks) 
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Question two 

Given the following non-homogeneous differential equation as 

d x(t) _ 2 x(t) 20 e 31 + 5 cos(21) ,
dt . 

(a) 	 set its particular solution as xp (t) = k] e- 31 + sin(2t) + k3 cos(2t) and find the values 

( 10 marks ) 

(b) 	 for the homogeneous part of the given non-homogeneous differential equation, i.e., 

d x(t) 2 ()--+ xt a ,set x(t) e'XI and find the appropriate values of a and 
dt 

thus write down its general solution xh (t) 	 (5 marks) 

(c) 	 write down the general solution of the given non-homogeneous differential equation in 

terms of the answers obtained in (a) & (b) . If the initial conditions are 

d x(t) 
1 ,find its specific solution (t) . ( 10 marks)

dt
x(o) =6 & 

I 0 



Question three 

Given the following Legendre's differential equation as : 

2 x d y( x) + 12 y( x) 0 . . . . . . (1) 
dx 

use the pov.,rer series method, i.e., setting 
'" 

y(x) = :L>n xn sand ao *- 0 
n 0 

(a) \wite dOVi1l the indicial equations. Find the values of s and a] . Show that a] can be 

zero resulting from the indicial equations and thus use a] = 0 for the subsequent 

calculations in (b). ( 10 marks ) 

(b) 	 ViTite down the recurrence relation. For all the appropriate values of s found in (a), set 

1 and use the recurrence relation to calculate the values of an up to theao 

value of a6 • Thus write down two independent solution in their power series forms and 

show that one of the solutions is a polynomial. (15 marks) 
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Question four 

An tube capacitor extended very long into z direction with x - y cross section of area 

4 x 5 as shown below: 

f'

'1-=3v 

T 
! 

Its electric potential I(x, y) for the space in-between the two conductors, i.e., 0 < x < 4 & 

o< y 	< 5 , satisfies the following two dimensional Laplace equation: 

If connecting 3 volts battery to the given capacitor, the boundary conditions for the capacitor are 

I(O,y)=O 1(4,y) 0 , l(x,O)=O & l(x,5) 3 

(a) 	 set I(x,y) :::= F(x) G(y) and use separation scheme to deduce the following ordinary 

differential equations: 

k 2 - F(x)
d 
2 

d G(y) = + k 2 G(v) 

d 2 ' 
, Y 

where k is a separation constant. (5 marks) 
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Question four (continued) 

(b) wTite the general solution for (a) as 

='L(Ak cos(kx) + Bk sin(kx»)(Ck cosh(ky) + Dk sinh(ky)) 
'';' k 

where Ak ' Bk , Ck & Dk are arbitrary constants, 


Apply three zero boundary conditions which are equivalent to 


Ik (0, y) = °,Ik (4, y) °& Ik (x,O) = 0, and show that the general solution can be 


simplified as : 


,ntrx . 	 intry.
I(x,y) = 'L sm(-4-)smhl

( 

'--j
\ 


/1=:1 4
 

where 	 n ,2,3, . . .. .. are arbitrary constants. ( 10 marks) 

(c) 	 Apply the non-zero boundary condition, i.e., I(x ,5) 3, deduce that 

6 (1 -- cos(n tr )) 
n =1,2,3,,,'--- ( 10 marks) 

n tr Sl'nh(5n ...tr)­

\ 
_ 

4 

4 • ( ntr x) 	-(m tr x\1 d 2s: {O if(Hint: sm 	-- sm --) x = u = )1o 4 4 n,m 2 if n=m 
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Question five 

Given the following equations for coupled oscillator system as : 

iOJ	 iOJ1(a) 	 Set xl(t)=X j e ! & x2 (t) Xl e ,deducethefollowingmatrixequation 

6 
AX= X where A -4 & 	 (4 marks)( 

(b) Find the eigenfrequencies UJI & 	 UJ2 of the given coupled system. (6 marks) 

(c) 	 Find the eigenvectors Xl & X2 of the given coupled system corresponding to each 

eigenfrequencies UJI & UJ2 found in (b) respectively. (6 marks) 

(d) 	 Set x(t) (xJ(t ))1 ,then the general solution of x(t) in terms of the eigenfrequencies and 
Xl t ) 

eigenvectors found in (b) and (c) can be wTitten as 

where 

k j , k2 ' k3 & k4 are arbitrary constants. 

If the initial conditions of the system are given as : 

Xj(O) 2, x 2 (0)=0, ;\:1(0)=-1 & ;\:2(0) O,thenfindthespecificvaluesof 

k] , k2 , k3 & k4 which satisfies the given initial conditions. (9 marks) 
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Useful informations 
The transformations between rectangular and spherical coordinate systems are: 

r= 

x r sin(8) cos(¢) 


y = r sin(8) sin(¢) & 8 tan 

( 

- 1\--'----___ 
Z 

\Z :::: l' cos(B) 
¢:= tan-/ y 'I 

lx) 

The transformations between rectangular and cylindrical coordinate systems are: 

x p cos(¢) 


y p sin(¢) & 


Z Z 


Vf a + _1 af + e _1 afel ~ 	
3

hI au] h2 aU 2 h3 aU 3 

V • F = 1 ( a(~ h2 hJ + a(F2 hI h3) + a(F~ hI h2 ) I 
h1 h2 h3 aUI aU 2 aU3 ) 

Z=Z 

VXF=~ra(F3hJ_a + (a(Flh1 ) a(F3 h3 )) 

h2 h3 \ aU 2 aU3 h] h3 au) aUI 

+ l( a(F2 	hJ _a(F) hJi 
hI h2 au] au 2 ) 

where F=e) + e2 F2 + e3 and 

(uJ , u2,u3 ) 	 represents (x, y, z) for rectangular coordinate system 

represents (p,¢,z) for cylindrical coordinate system 

represents (r , 8 , ¢) for spherical coordinate system 

(el , e2 , e3 ) represents (ex, , e - z j
) for rectangular coordinate system 

represents (ep , e¢ , ) for cylindrical coordinate system 

represents (er , ee ' e¢ ) for spherical coordinate system 

(hJ ,h2 ' ) 	 represents (1,1,1) for rectangular coordinate system 

represents (l,p,l) for cylindrical coordinate system 

represents (1, r, r sin(B)) for spherical coordinate system 
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