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P320 CLASSICAL MECHANICS 


Question one 

(a) 	 If H denotes the Hamiltonian function and L is the Lagrangian function, use the 
n 

definition H;;;;;; LPo: (ia: - L [where Po: and qo: (a;;;;;; 1,2,··.,n) are the generalized 
0: I 

momenta and coordinates respectively, i.e., H = H(q] ,"',qn ,PI ,"',Pn ,t) , 

oL . oL
L;;;;;;L(ql,···,qn,ql"",qn,t) , Po: = . and Po: =--] to show that 

oqo: oqo: 
oH

(i) qo: =-0- a = 1,2,.··,n 	 (4 marks) 
Po: 

oH 


(ii) P =-- a=1,2,.··,n 	 (4 marks) 
0: oqo: 


oH oL 

(iii) 	 -=-- (7 marks)

ot ot 
(b) 	 For a certain dynamical system the kinetic energy, T, and potential energy, V, are given by 

T = q; + 2 ql q2 + 3 qi 
V =4q; 


where q I , q2 are the generalized coordinates. 


(i) 	 Find the momentum PI & P2 of the system. (2 marks) 
2 

(ii) Use H = LPo: q0: L to find the Hamiltonian function of the system and 
0: = I 

1 ( 2 2) 2show that H = - 3 PI - 2 PI P2 + P2 + 4 ql 	 (8 marks)
8 

2 
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Question two 

The definition of the Poisson brackets are given as [u, vL,p 

simply written as [u, v] , where qa and Pa are the a/h generalized coordinate and 

momentum respectively. 
(a) For any function F(ql ,q2 ,; .. ,qn' PI ,P2"" ,Pn ,t) , prove that 

d F = [F, H] + aF 

dt at 


where H is the Hamiltonian ofthe system, i.e., H(ql ,q2 ,.··,qn ,PI ,P2" ",Pn ,1) 
(5 marks) 

(b) The three components of the angular momentum T (== i x p) of a particle of mass m 

are given by II q2 P3 - q3 P2 , 12 == q3 PI - q, P3 and 13 = ql P2 - q2 PI 
where Pi = m qji 1,2,3 . Show that· 

(i) [/p/2]= 13 (5 marks) 

(ii) [q2,/3]=ql (5 marks) 

(c) For an equation ofthe type ddUt -- [u ,H] the specific solution of u( ) t is given by the 

following Taylor series expansion for the time t as 


t 2 t 3 


u{t) == u + [u H] t + ITu H] H] + rITu H] H] H] - + ........ . ...... (1)
o , 0 L.I:, , 0 2! ill, , , 0 31 

where subscript 0 denotes the initial conditions at t =0 . 

For a simple harmonic oscillator system described by H == + .!. k X2 , if the initial 
2m 2 

conditions are given as Xo and Po ,use eq. (1) to deduce that 

k Xo 2 k Po 3--I ---I + ...... (10 marks)
2m 6m 2 
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Question three 

(a) 	 Given the Lagrangian for the two-body central force system as: 

L =T -	 V =.! !l (;2 + r2 tF)+ k 
2 r 

where !l is the reduced mass of the system, k is a positive constant and (r, ()) are polar 
coordinates ofthe motion plane with its origin at the center of mass of the two-body 
system. 
(i) 	 Write down the Lagrange's equation for () and show that the angular momentum 

I is conserved, i.e., deduce that 
. /() = ...... (1) where I is a constant. (3 marks ) 

!l 
(ii) 	 Write down the Lagrange's equation for r ,with eq.(l) inserted, deduce that 

/2 k 
!l r - + - =0 ...... (2) 	 ( 3 marks )

!l r3 	 r2 

(iii) 	 Multiply eq.(2) by d r and use r d r df dr=df dr fdf d[r22] to 
dt dt 

show that the total energy E (= T + V) is conserved, i.e., 

1 ('2 2()'2) -k E (3)!l r + r - =const. ...... (6 marks)
2 r 

(b) 	 If an earth satellite of 500 kg mass is having a pure tangential speed ve =8,000 mls at 

its near-earth-point 600 km above the earth surface, 
(i) 	 calculate the values of I and E of this satellite, ( 3 marks ) 
(ii) 	 calculate the values of the eccentricity, 8 ,and show that the orbit is an elliptical 

orbit. Also calculate its period. ( 6 marks ) 
(iii) 	 determine the value of the ve at the same given near~earth-point such 

that the satellite orbit is a circular orbit, 	 ( 2 marks) 

(H' tEl 2 k circular orbit, _ k ) 

Ill: = 2 !l Ve - -; - 2 r 


(iv) 	 determine the value of the Ve at the same given near-earth-point such 

that the satellite orbit is a parabolic orbit. ( 2 marks) 
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Question four 

(a) Two set of Cartesian coordinate axes are having the same origins and z-axis. The non­
prime system (referred to as "rotating" system) is rotating with an angular velocity 

iiJ == e• iJ about the prime system (referred as "fixed" system) as shown below: z

For any vector field F decomposed into the above two-set of cartesian components, i.e., 

F == ex Fx + ey Fy + e; Fz == ex' Fx, + ey' Fy' + e", F:, , show that 

idFJ (dFJ - F­- = - +OJX where 
\ d t fixed d t rotating 

d F _ _ d Fx' - __y' - d and( -J dF 
d t - ex' d t + ey' d t + ez' d t 

fIXed (12 marks )
d F _ d Fx _ d Fy _ d F

(dt . ==ex dt+ ey dt+ e: d;Jrotating 

(Hint: ex = ex' cos(e)+ ey' sin(e) , ey == - e:<;, sin(e) + ey' cos(e) and ) 
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Question four (continued) 

(b) 

(u 

If a person, near the earth surface at a northern latitude A ,fired a bullet of speed, Vo , 

at a target situated at his north direction ( - ex direction) of distance L away from 

him. Assuming he has a perfect rifle and the time T for the bullet hitting the target is short 

and T ~ 	..£ (i.e., neglecting the gravitational bending and assuming the bullet is moving 
Vo 

along 	 - x direction with constant speed Vo ) . 

(i) 	 Show that the bullet will miss the target by a deviation distance d resulting from 
the Coriolis force (- 2 m OJ x v,) . Show that 

OJ L2 
d =-sin(A) (11 marks) 

Vo 

(Hint: 	 Geff ~ - 2 OJ x v, , v, ~ ex (- Vo) , OJ = ex (- OJ COS(A)) + e= (OJ sin(A))) 

(ii) 	 Given the values of A = 600 , L = 2000 m, Vo = 800 m/s and OJ = 2 IT rad/day 

(i.e., 	 OJ = 7.27 X 10- 5 radls) , determine the value of the deviation distance d 
(2 marks) 
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Question five 

Six equal mass point m (= ml =m2 =... =m6 ) attached by massless rigid rods to form a rigid 

body of diamond shape with the center of mass of the "diamond" chosen as the origin of the body 
coordinate system (Xl' X 2 ,xJ as shown in the diagram below. 

/. 

/ 

1113 	(-a) " /0) 

7/J, 
(a... 0 0)

/ ;I 	 . 

where each mass point's coordinates in terms oflength a & b is indicated in the diagram. 

(a) 	 Evaluate all elements of the inertia tensor, I ,of the given rigid body with respect to 
the chosen body coordinate system and show that 

2 m(a 2 
+ b

2 
) 0 0 ] . 

1= 0 2 m(a 2 + b2
) 0 


[ 2
o 0 4 m a 

(6 marks) 
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Question five (continued) 

(b) 	 If the given rigid body is only rotating with an angular velocity iiJ without translational 
motion with respect to a fixed inertia coordinate system (XlI , XI2 , X' 3) sharing the same 

origin as that of the body coordinate system, write down the total kinetic energy 

1-1-	 b &TT == - (j) • • (j) in terms of m, a, ,(j)I' (j)2 (j)3 where= 	rotational 
2 

iiJ = ill {VI + il2 {V2 + il3 (j)3 (2 marks) 
(c) 	 The following are Euler's equations for force-free pure-rotational motion, i.e., 

L = Trotalional , for already diagonalized 1 as the case in (a). 

(I2 - IJ (j)2 (j)3 - II WI =0 ...... (1) 
(/3 - II) (j)3 (j)1 - 12 W2 == 0 ...... (2) 


{
 
(II 	- 1 2 ) (j)1 (j)2 - 13 W3 == 0 ...... (3) 

(i) For our given rigid body, deduce from the above Euler's equations that 

(j)3 	=const. K . ..... (4) 

. _(_a 2 +b2 )K 
 (5)(j)1 	 - 2 2 (j)2 

a +b 

2 +b2 


W2 = -
_a K 

(j)1 ...... (6) 


(6 marks) 

is a positive constant and set (ii) 	 If b > a & K > 0 ,then 

it as Q . Deduce from eq.(5) and eq.(6) in (c)(i) that 

m= Q2 {VI ...... (7) (3 marks)
l 

(iii) 	 By direct substitution, show that (j)1 =A cos{O t + B) ...... (8) is the solution 

to eq.(7) with A & B constant values linking to the given initial value of iiJ . 
(2 marks) 

(iv) 	 Substitute eq.(8) into eq.(5) and deduce that 
(j)2 - A sin(O t + B) ...... (9) (2 marks) 

(v) 	 Show that the magnitude of iiJ is a constant for all time t. (4 marks) 
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Useful informations 

v = - fF. d T and reversely F = VV 

n 

H = I(Pa qJ L = H(ql ,Q2 ,··,qn ,ql,q2 ,.··,qn ,t) 

2 

G = 6.673 X 10- 11 N m 
kg 2 

radius of earth rE =6.4 x 106 m 

6 x 1024 mass of earth mE = kg 

. 'I k h k Gearlh attractzve potentza == - were = m mE 
r 

E ~ JI + 2 E I' {(& = 0, circle), (0 < E < I, ellipse), (E = I, parabola), ... } 
. IJ. k 

k
semi - major a =~-

2 lEI 
, ' b I 

semI mmor = ~21J.1EIFor elliptical orbit, i.e., 0 < £ < 1 , then 

period r = 21J. (n- a b)
I 

rmin =a (1 - £) & rmax =a (1 + £) 

for plane polar (r ,e) system with unit vectors (e, ,eo)' we have 

V e, f + eo r iJ 
{ a= e ~ - r iJ2 )+ eo (2 f iJ + r e)

f 

t7f - af - 1 a 
v =e, -+eoar r ae 

9 




Useful informations (continued) 

( 

Ima (X;,2 + X;,3) Ima Xa,l Xa,2 - Ima Xa,l Xa,3 

a a a 
1= - Ima Xa,2 Xa,1 

a 
Ima (X~,1 + X;,3) 
a 

Ima Xa,2 Xa,3 

- Ima Xa,3 Xa,l 
a 

- Ima Xa,3 Xa,2 

a 
I::Za (X~'l + X~,2)
a 

FeJf =F - m R - m (0 X r m mX (m X r) 2 m mX Vr wheref 

r'= R+ rand 

r' .refers to jixed(inertial system) 

r refers to rotatinal(non - inertial system) rotates with iiJ to r' system 

R from the origin of r' to the origin of r 
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