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P331 ELECTROMAGNETIC THEORY 


Question one 

2A uniform surface charge density of (~) C / m where k is a positive constant is deposited 

on p =a surface ofa very long straight coaxial cable, with an inner solid wire of radius am. 

2A uniform surface charge density of ( - :) C / m is deposited on p =c surface of the outer 

hollow wire with inner radius of c m and outer radius of d m. In-between the wires is filled 

with two layers of insulating materials with permittivity Bl & B2 for 

(a < p < b) & (b < P< c) layers respectively as shown in the figure below. 

(a) 	 Find the total electric charges per unit length deposited on each of the inner and outer 
conducting wires in terms of k and name them as ql & q2 respectively. 

Show that ql = - q2 . (3 marks) 

(b) 	 Set n(p,(J,z):::: ep Dp(P) (write a brief justification for this setting), draw an 

appropriate closed surface and utilize the integral form of electric Gauss law, i.e., 

:ijn•d s ={total Q enclosed by S} , to fmd Dp (P) for a < p < c region. Then 

write down the form ofelectric field it for a < p < c region. ( 2 +2 + 6 marks ) 
(c) 	 Find the potential difference between the inner .and outer wires and then write down 

the distributive capacitance of the given coaxial cable system. (5 +2 marks) 
(d) 	 Explain briefly the bounded charge excess on the surface of a dielectric material and then 

find the surface charge density of the bounded charge exce'J Us p on the 

p = a & p =c dielectric material surfaces in terms of k , Bl & B2 . (1 + 4 marks) 

(Hint: u sp =e" • P where e" is the normal outward unit vector on dielectric surface) 
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Question two 

(a) 	 A thin conducting wire of length 2 L ,with its central axis coinciding with the z axis and 
its centre point coinciding with the origin, carries a steady total current I along positive 
z direction as shown in the figure below. 

• T 
l 
T 

(i) 	 Since the given current source is only along z axis, its produced vector 
potential at a field point P (p, tP, 0) is also having only z component A ,i.e.,z 

- _ fZ'=+L flo I d z' f Z' +L flo I d z'
A =e 	 A where A = =2 

z Z Z z'=-L 47r R z'=o 47r ~{z,y + p2 ' 

carty out the above integral for Az about z' and show that 

Po I [L + ~L2 + p2 JA = --In -----'----	 (9 marks) 
z 27r P 

(Hint: 	set z' = p tan{a) , Jsec{a) d a = In{sec{a) + tan{a)) ) 

(ii) 	 For L»p ,i.e.,~L2 +p2 -tL, use A~ez' Iln(2LJ and B='VxA 
27r p 


to find the magnetic field B at the field point and syow that 


B= e Po I 
 (6 marks) 
11 2,7r P 
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Question two (continued) 

(b) 	 Placing a rectangular conducting loop ofdimension b x eadistance of d away from 

the central current carrying wire as shown in the diagram below, Le., the inner region 
confmed by the rectangular loop in clockwise sense is 
S: d:S p :S d + b , 0 :S z :S e & d S = Q; d p d z , 

(i) 	 find the total magnetic flux (D m passing through the inner region confined by the 

rectangular loop, i.e., (D m = 1jj. d s ,in terms of .Po , b , e , d & I . Also 

write down the mutual inductance M between the given rectangular loop and the 

long straight wire and show that M= Po x In(d + b) x e. (5 marks)
2J! d 

(ii) 	 If given the values of b =-5 em , e =8 em & d =10 em find the value of 

M . Further if the wire carries a sinusoidal current I{t) = 2 sin{9 t) A instead 
ofcarrying a static current I ,find the induced e.m.f. in the rectangular conducting 
loop . ( 3 +2 marks ) 
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Question three 
13i 

(a) 	 An interface separating two dielectric regions of permittivity &1 & &2 is shown in the 

figure below. £1 & £2 are the electric fields at the same point on the interface in the 

different regions and {}J & {}2 are their respective angles made with the normal. 

i 	

t
• I 

:E'l} 

k~foa­

Rr2 (€-:z) 

I 

(i) 	 Use the integral Faraday's law and by choosing proper closed loop across the 

interface, deduce that the tangential component of £ is continuous at the interface, 
i.e., Ell =E21 • (5 marks) 

(ii) 	 Use the integral electric Gauss law and by choosing proper closed surface across the 

interface, deduce that the normal component of jj is continuous at the interface, 
i.e., D]n • (5 marks)=D 2n 

(iii) 	 Use the results in (a) (i) and (a)(ii) and deduce the following refraction law for £ 
&J tan((}2 ) = &2 tan((}l) • ( 4 marks ) 

(b) 	 The equation ofmotion of an average conduction electron based on Drude' s model is 
dVd - 2me Vd m -=-eE---'--;;;... 

e dt Tc 

(i) Explain briefly each term in the above equation. 	 ( 2 marks ) 

(ii) In the steady state situation, i.e., dVd = 0 ,deduce the following point form of 
dt 
2 

Ohm's law J=a E where a=~Tc ;(Hint:J =Pv Vd =- nevd )( 5 marks)
2me 

28 atoms
(iii) If a certain pure metal has an atomic density of 3/ 10 3 at room 

m 
temperature and three outer orbit electrons are conduction electrons, find the value 

of T c 	 if its measured dc conductivity is (j = 2 x 107 1 
( 4 marks )mn 
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Question four 

(a) 	 The Maxwell's equations for the material region of parameters j.J ,& & a are 

V-E 0 ro 
V-H=O (2) 

- - 0 fl
VxE=-j.J-	 (3)ot 
- - - oE
VxH=aE+&- ...... (4)

ot 
(i) 	 Deduce from them the following wave equation for fl 

- 2 ­
2 - oH 0 H 

V H -	 j.J a - j.J & -- = 0 ...... (5) . (3 marks)ot ot2 

(ii) Set fl as (if(space) ei a> t) and substitute it into the above wave equation, 

to deduce the following time-harmonic equation for fI(space) as 
-

92 ­
V2 fI(space) - fI(space) =0 where 9=~i{j)j.Ja-{j)2 j.J& 

(3 marks) 
(iii) 	 Set the propagation constant 9== a + i 13 , to deduce that 

(6 marks)p= wfB ~I+(:J +1 
(Hint: 	Sin(~) =l- c;s(O) & cos(O) (JI + tan'(O)tl 

(b) 	 An uniform plane wave traveling along the + z direction with the field components 
" <200 V

Ex(z) & Hy(z) has a complex electric field amplitude Em =100e' - and 
m 

propagates at a frequency f =106 Hz in a material region having the parameters 

a 
j.J =J.1.o 	 , & =2 &0 & - =0.4 . 

(j)& 

(i) 	 Find the values ofthe propagation constant 9 (= a + i 13) and the intrinsic wave 

impedance ij for this wave, ( 4 marks ) 
(ii) 	 Express the electric and magnetic fields in both their complex and real-time forms, 

with the numerical values of (b )(i) inserted, ( 6 marks ) 
(iii) 	 Find the values of the penetration depth, wavelength Fd phase velocity ofthe given 

wave. ( 3 marks ) 
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Question five 
(4.' 

"1\:11 unifonn plan:eWave (E;1 , iJ;1) , operating at a frequency f , is nonnally incident upon a 

layer of d2 thickness, and emerges to region 3 as shown below : 
I 	 ' 

A'~f : £,ti,,, et,<J/) :l?r2 :jPj;/tz ;a;); Rr3 ~(A'3;~" 0:3) 
~ 	 ( ~ I A 

/'t-	 ~-I' -~J I E"'+ ;;'-r -.;l'2~ !::"'-t- ;"1" -~$ 
E,)(l = 	Em, e 1)(2. S-m2 e I=-X3 -= C»r3 e 

t-F-:~I 1 A+=' 1--. ~ ,1\"" A+ -~ ~ 	 4 .... 

• 	 J-/; "" $ '12 "" !:p:... .~; =- ~)G 
~. 7z ~ 

__ _ _ _ 0, __ ~ ~ ____ -)0. (~) 

A _ A .... _~~· ,,_ .A_ ~ . 

i;'=~ie ~X2:~Le 

~ ~.- -1 \:t:+ J.,,_A 

... - EX. /'._ E"z 
Jlel""-~ HIP-=-~ 

"2, : . fz. : 
I 	 I 

:< d2~: 
• 

0 1 , O2 & 0 3 are the respective origins for region 1 , 2 & 3 chosen at the first and second 

interface . 

(a) 	 Define for the ith region (i = 1,2,3) the reflection coefficient fi (z) and the total wave 

impedance 2f (z) and deduce the following: 

fj(z) =~i(Z)-~i (6 marks)
Zj(z)- i1i 

(b) 	 If f = 108 Hz & = A2 , region 1 & 3 are air regions and region 2 is a lossless d2 4 


region with parameters 


(i) 	 find the values of /31 , /32 , /33 , A2 & 172' (note: 171 =173 =120 1C n 
and = a2 = a 3 = 0) ( 4 marks )a l 

(ii) 	 Starting with f3 (z) = 0 for the rightmost region, i.e., region 3 , and using 

continuous 2 at the interface as well as the equations in (a), fmd the values of 

23(0) , 22(0) , f2 (0) , f2(- dJ , 22(- dJ , 21(0) & fl(o) ( 10 marks) 

" - & E~ + Iif given Em+ 1 =100 ei3O
" V ( 5 marks)(iii) 	 Find the value of mlE m2 m 
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Useful informations 
e=1.6x10- 19 C 	 {(f7.... 

me =9.1 x 10- 31 kg 
. Y.".,." 

Po =41&xlO- 7 H 
m 

Eo = 8.85 X 10-12 	 F 

m 


.. 0) f;;-i 
a= J2 ~-1 

• 

0) f;;-i 
/3 ::= J2 ~+1 
--==1= =3 x 108 	m 


s 


'10 =~I'O =120" Q =377 Q 
Eo 

/30= 0) ~Po Eo 

1fs E-ds= ~ Hfv Pv dv 

#s jj-ds=O 

1L E- d T= - :t (Hs jj - d s ) 

{ jj - dT=P Hs J - d s + P E: Hs E - d s ) t 

V- E= Pv 
E 

v-jj=O 

- - 0 jjVxE=-­ot 
- - -	 oEVxB=pJ+PE­ot 
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iJ =E E= Eo E+ P & jj P if = Po if + M 

#s t. ds == #i (V. t) dV divergence theorem ,l.t~ 


{ t. dT == Hs (V xF). ds Stokes' theorem 

V. (Vx t)==O 
Vx(vt)==O 
Vx(V xt)==V(V.t)-V 2 t 
Vt=e at +e at +e at e +e !at +e at 

x a x Yay az pap ; p a¢ azz z 

, _ at _ 1 at _ 1 
=e -+e --+e ---;--:­r ar e r ae ; r sin(e) a¢ 

- - a(FJ a(FJ a(F) 1 a(Fp p) 1 a(F;) a(F)V.F=--+--+-_z =_ +___ +__z 

ax ay az p ap p a¢ az 
== _1 a(Fr r2) + 1 a(Ff) sin(e)) + 1 a(F;) 

r2 ar r sin(e) ae r sin(e) a¢ 

Vx t = e (a(FJ _ a(Fy )) + e [a(FJ a(FJJ + e (a(Fy ) _ a(FJ) 
x ay az y az ax ax ayZ 

= ep[a(FJ _ a(F; p))+e (a(FJ _ a(FJ) + ez (a(F; p) _ a(Fp)) 

p a¢ az ; az ap p ap a¢ 


== er (a(F;rsin(e)) a(Ff)r))+ ee (a(Fr)_a(F;rsin(e)))+e;[a(Fer)_a(Fr)J 
r2 sin(e) ae a¢ r sin(e) a¢ 'ar r ar ae 

where t=exFx +ey Fy +ezFz epFp +e; F; +ez F =er Fr +ef) Ff) +e; F; andz 

dT =ex dx+e dy+e dz=epdp+e; pd¢+e dz=erdr+ef) rde+e; rsin(e)d¢y z z 


2 2
2 2 2 
V2 t = a t + a t + a t 1 ~(p atJ + _1 a t + a 

ax2 ax2 ax2 pap ap p2 a¢2 az2 


=~~[r2 atJ+ 1 ~(sin(e)atJ+ 1 a 
2 


r2 a r a r r2 sin(e) a e a e r2 sin 2(e) a¢ 2 

Z;(z)=r/; l+~i((Z)) r;(z) = ~;((Z))-~i & 

r
1-ri z Z; z -11; 


i 
(z') =r; (z )e2rl (z' - z) where z' & z are two positions in i th r~gion 


'/ 
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jj =& E=&0 E+ P & B=p fI = Po fI + if 

#s p. d'S = ffl, (V. p) d v divergence theorem fl.t ~ 


{ p. dl = ffs (V x F). d'S Sto7res'theorem 

V. (Vx p)=O 
Vx (V f)=O 
Vx(Vxp)=v(v.p)-V 2 P 
Vf=e of +e of +e of =e a +e ~ of +e of 

# 
Xox Yay Zoz pap "po¢J Zoz 

. _ of _ 1 of _ 1 of 
=e -+e --+e ­

r or e r oe '" r sin(e) 0¢J 
- - _ o(FJ o{Fy) o(FJ lOP) 1 o{F,,) o(FJV.F---+--+--= +---+-­

ax oy oz P op P 0¢J oz 
=~0(F,r2)+ 1 a(Fe sin(e)) + 1 o(F,,) 

r2 or r sin(e) oe r sin(e) 0¢J 

Vx P == e (O(FJ _ O(Fy)] + e (O(FJ _ O(Fz )) + e (O(Fy)_ O(Fx)] 
x oy oz y oz ax ax oyz 

= ep (O(Fz ) _ o(F" p)]+e (O(Fp)_ a(FJ] + ez (O(F", p) a (FJ] 
P 0¢J oz "oz op p op 0¢J 

= e, (O(F", rsin(e))_o(Fe r)]+ ee (O(Fr )_ o(F",rsin(e))]+ e" (o(Fer)_o(F,)) 
r2 sin(e) oe 0¢J r sin(e) 0¢J .. or r or oe 

where P==ex Fx +ey Fy +ez F =epFp +e" F", +ez F ==e, F, +ee Fe +e", F" and 

dl ==exdx+eydy+ez dz==epdp+e", pd¢J+ez dz=e, dr+ee rde+e", rsin(e)d¢J 
2 2 2 2 2 

z z 

V 2 f == 0 f2 + 0 f2 + 0 == ~ ~(p af) + _1 0 f + 0
ox ox a pap a p p2 0¢J2 a 

2 
=_1 ~ (r2 Of] + 1 ~ (sin(e) af) + 1 0

r2 or or r2 sin(e) oe oe r2 sin2(e) 0¢J2 

Z,(z)=1/, l+~'ii f,(z) = ~'iz~-~' & 
1-r i z Z; z - TJi 

['i (z') =rAz)e 2;Yi (z'-z) where z' & z are two positions in ith region 
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