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P320 CLASSICAL MECHANICS
Question one

(a) Given the following definite integral of
J(a)= J':z Fle,x),y'(@,x), y"(@,x),y" (@,x);x) d x , where the varied integration

path is y(asx)=y(x)+a77(x) > n(xl)zn(x2)=0 >

dn(x)  _dn()
dx ex, dx

~ following diagram :
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Using the extremum condition for J{a) , i.., 2—{(—6{—)‘1» =0 ,to deduce that
a

a=0
f along the extremum path jie., f(¥(x),y'(x),y"(x),y"(x);x), satisfies the following
equation: :

2 3

or _dfof), 4 jof) d [0/ ), 1 (12 marks)
oy dx\0y') dx“"\0y') dx \oy"



Question one (continued) 12§

(b) A simple pendulum of length b and mass m moves on a mass-less rim of radius a
rotating with constant angular velocity @ as shown in the figure below:

2
R,

J—

Write down the Lagrangian of the system in terms of & and then deduce the following
equation of motion

éng-a)z cos(B—-a)t)-k%sin(ﬁ):O (13 marks)



Question two
b

A spherical pendulum of mass m and length 4 is shown in the figure below:
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@ @ From x=5 sin(@) cos(¢) , y=b sin(é?) sin(¢) & z=-b cos(@) and
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T= % m (fcz + 32+ 22) & V =m g z , deduce the following Lagrangian

for the system interms of 6 & ¢ as

L =.;- mb* (0% + ¢ sin>(8))+ m g b cos(g) - 1) (5 marks )
(i)  Write down the equations of motion for € & ¢ and deduce that

] dPte =mb* sin(9) cos(6) §* —~ m g bsin(@) - (2)
dp,
=0 ..... " 3 .
dt 3)

where p,=mb* 8 & p,=mb’sin*(0)4
(5 marks)
(i)  From eq.(3), one has p, = const. —==— K , deduce from eq.(2) the following

2
equation for small @ ,ie., (sin(&)zt? and cos(f)=~1 -—%— or 1] , that

m b0 G=K*-m*gb*0* - (4) o (4 marks)
(ivi If K=0 ineq.(4), write down the general solution of é(t) . (3 marks)
® @ Find the Hamiltonian of the system intermsof 6 , ¢ , p, & p, .

(4 marks)
(iiy  Write down the equations of motion for H in (b)(i). (4 marks )



(a)

Question three
(vt

Given the Lagrangian for the two-body central force system as :
L=T—-13"=:—;—,b:(r"2 +r? 9.2)+£€~
P

where 4 is the reduced mass of the system, k is a positive constant and (r ,6) are polar

coordinates of the motion plane with its origin at the center of mass of the two-body
system. The integral form of orbital equation can be written as

= I — dr +const. -eee- ¢}
foleosiat
2ulE- 5+ —
2purs r
where I=pur? 6 (ie., angular momentum) and E-——lz— (2—1-r2 92)——

(i.e., total energy) are two constants of the system.
Choose the integration constant in eq.(1) as zero (i.e., this is the same as choosing

the initial valueof r as r,,, at §=0),and set us-l— ,
r

@A) show that eq.(1) can be simplified as
mmj'm__.m____du ------ @) (2 marks )

2uk
("“‘}‘2—'*11 + 12 %J

(i)  combine (uz - 2;: k u] in €q.(2) into the first two terms of a perfect square

of v’ and show that eq.(2) can be further snnphed to

g_._j ...... 3)
/e (")2] (2 marks)

2
where az\/; K L2ZHE o oo, EE

1 & 5
1
(i) set #'=acos(8) and carry out the integral of du' and
j Zzag _(u.)zj

show that eq.(3) becomes &= - @ (2 marks)

(iv)  Taking cosine of eq.(4) and using u' =a cos(ﬂ) u'=y- i;-ﬁ u= ! ,
r

deduce the following orbital equation

2 — 2
9—514-8005(9) where as—l—— & ¢= 1+2El2 (6 marks )
¥ uk uk



(b)

Question three (continued) ¥
If an earth satellite of 500 kg mass is having a pure tangential speed
v, (:: r 9):: 9,000 n at its near-earth-point 800 km above the earth surface,
$

() calculate the values of [/ and E  of this satellite , (4 marks )
(i)  calculate the values of the eccentricity & and show that the orbit is an elliptical

orbit. Also calculate its period. ( 2+4 marks )
(iii)  what should be the minimum value of the v, at the same given near-earth-point

such that the satellite would have a open orbit ? (3 marks)



Question four

179

Consider the motion of the bobs in the double pendulum system in the figure below.
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Both pendulums are identical and having the length 5 and bob mass m . The motion of both
bobs is restricted to lie in the plane of this paper , i.e., x-y plane.

@ O

(ii)

(iii)

2
For small 8, and 6, ,ie., (sin(&)wﬁ and cos(Q)wl-—%—- or lj , Show

that the Lagrangian for the system can be expressed as:

2
L=mb2é,z+—§-mb26"22+mb2éléz-mgb(l+9,2+%—] ------ (1)
where the zero gravitational potential is set at the equilibrium position of the lower
bob, ie, 6, =0,6,=0 and y=0. ’ (5 marks)
Write down the equations of motion and deduce that

20, +6,=-220 ... )
1. b (5 marks)
314.92:_%52 ...... ()
Deduce from eq.(2) & eq.(3) the following :
6=-280+29 ... (4)
! b b : (3 marks)
92=2“§91-2§-92 ...... (5)




® O

(i)

(iii)

Question four (continued) 3
11

Set 6,=X, e and 6,=2X,¢'°" (where X, and X, are constants) and

deduce from eq.(4) & eq.(5) the matrix equation — @> X =AX where

. ._[2 g.} g
X b b
X=|."| and A= (3 marks)
O

b b
Find the eigenfrequencies @ of this coupled system and show that they are

m,:f(z-\/i)-éi- & a>2=}(2+\/§)ibg— (5 marks )

Find the eigenvector corresponding to @, in (b)(ii). (4 marks)



(a)

Question five
171

The fixed (or inertia) coordinate system X’ shares the same origin with the body
coordinate system X such that only rotational motion is considered. The rotational
velocity @ of the body system with respect to the fixed system are breaking down into

three independent angular velocities , i.e., @ = @+6 +y where (¢,0,y) areEulerian
angles . We use two intermediate coordinate systems X” & X to bridge between X’
& X systems such that X'=, X", X"=4,X" & X=A4i, X" where

cos(p) sin(p) 0 1 0 0 cos(y) sin{y) 0
A, = —sin(p) cos(p) 0|,4, =0 cos(8) sin(6)|, A, == sin(w) cos(y) 0
0 0 1 0 —sin(g) cos(6) 0 0 1

as shown in the figure below.

Line of nodes

I e AN~

@) Since the direction of 0_5 is along X3’ —axis (which is the same as x3” —axis) with
0
the magnitude of ¢ thus ((;)' =| 0| in X" system ,show that qE in X
@
¢ sin(6) sin(y )
system(i.e., the body system) is (g;)= ¢ sin(p) cos(w)_ in X system. In other
@ cos(@) '
words, show that
¢ sin(f) sin(y) 0
¢ sin(0) cos(y ) | = A, 44| 0 (S marks)
¢ cos(6) ¢



(b)

(ii)

(iif)

@

(ii)

Question five (continued)
32

Since the direction of & isalong x;” —axis (which is the same as x;” —axis)

-

0
with the magnitude of 6@ thus é 0| in X' system ,show that 6‘ in X
0

6 cos t;/)
system(i.e., the body system) 1s -0 sm . In other words, show that
0 cos(t//) 0
— @ sinly) =21,10 (3 marks)
0 0

Since any rotational velocity of a rigid body can be expressed as @ = @+ 6+ v
deducethat @ in X system(i.e., body system) in terms of Eulerian angles is
@, ¢ sin(@) sin(y ) + @ cos(y)
(@)=| o, |=| ¢ sin(0)cos(y) - Gsinly)| in X system (4 marks)
@, @ cos(t?) +y
By proper choice of the orientation of the body coordinate system, the inertia tensor
I (i.e., rotational mass) of a rigid body can be in the form of a diagonalized

I, 0 0
matrix ,i.e, I={ 0 I, 0| ,thusitsrotational kinetic is
0 0 I,

1

1 1
T =-2-Il 0)12+512 a)22+513 ®,"

rot

Consider a torque free pure rotational motion of the rigid body, then its
Lagrangian is

L=T,

1 1 1 L
e 211 o +§I2 o, +§13“ca32 —aL((o,&,y/,qo,é,w) :
Write down the Lagrange equation of motion for ¥ and deduce that
(1, -1 )a)l @, -1, 0,=0 -e (1) (11 marks)
Based on what argument one can write down the other two equations of motion
directly from eq.(1) in (b)(i) as

(I -L)o, o, -1 & =0 & (13 - 1) o, o, -1, o, =0 without going
through the similar process of finding the equations of motion for the other two
Eulerian angles? (2 marks)

10



Useful informations

V=- _[chf and reversely F=-VV

L=T‘V=L(q1,q2 RN N R 9"'=qn’t)
" — and p, = oL
4o 09,

H= Z(pa qa)_L = H(QI’QZ ?“.3qn ?q.l 9@2 ’."Sq.rn ’t)

a=1

e = H and p, = OH

Do dq,

: _~~| Ou Ov  Ou Ov
[u’v]_z(aqa op. 9P, 6%]

a=l

1 N m?
k2

g
radius of earth r, =6.4x10° m

G=6.673x10"

mass of earth m, =6x10* kg

. . k
earth attractive potential = - — where k=G mmy

P
2ED? . .
=1+ P {e=0,circle), (0 <& <1, ellipse), (¢ =1, parabola), ---}
7,
1u=—n—ﬂ—zm1 if my,>>m,
m, +m,
semi— major a:——k—
Y
l

For elliptical orbit,ie.,0 <& <1, then < semi —minor b= /2 7 1 E[

period r=2—ﬂ(xab)
l
¥ min =a(l-¢) &r =a(l+¢)

for plane polar (r ,8) system with unit vectors (¢, ,&,), we have
V=2 F+é,r@
i=¢ (F-r6?)+é, 27 6+r0)
s 8 1af
or r 06

<}

f

11



Useful informations (continued) ke

£
2 2
Zma (xa,z +xa,3) *Zma xa,l xa,2 —Zma xa,l xa,3
« a a
_ 2 2
I= -Zma xa,Z xa,l Zma (xa,l +xa,3) ”Zma xa,2 xa,3

a a a
2 2
- Zma Xa,3 Xa1 _Zma Xq3 Xa,2 Zma (xa,l + xa,l)
\ a a a

ﬁ‘q,r:ff—ml—éf—méx?-mé’;x(@x?)—zmﬁ)xﬁr where
F'=R+7 and
F' refersto fixed (inertial system)
refers to  rotatinal (non ~inertial system) rotates with & to 7' system
R from the origin of 7'to the originof ¥

dr
v, =|—

di ),

~
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