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P331 ELECTROMAGNETIC THEORY 


Question one 

(a) 	 Two equal and opposite point charges ± q which form an electric dipole with a dipole 

moment of p =e p =e (q d) , situated at the origin is shown below. 

t} 
z z 

" P(%/~) 

ta a..t(o,o,i>
o/i. 

o ddj" -~ d"{o,o,-:;:i 

(i) 	 Use superposition principle to write down the electric scalar potential f at the 

field point P (O,O,z) due to those two point charges which form a dipole. Simplify 
it and deduce that 

(2 marks)
f~ _(~)'4 1l Eo 

(ii) 	 Use Ii == - Vf to find the electric field Ii at the field point P (O,O,z) due to 

the given dipole. Then show that Ii:::::: e if z» d. (6 marks ) z 
21l Eo 
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Question one (continued) 

(b) 	 A circular ring L of radius a carries a constant counter clockwise line current I. The 
ring is situated on z =°plane with the ring's centre at the origin as shown in the 

following diagram 
...l 

e;' \ 1, ~(" 
P(O,4J) 

I 
I 

\ 	

~(I)//, ..,,).:._ ..__. - \ //~ I ' ....,,, ."':,,f;r dtJ ~" ' 
(I ~ ;!'y., .,. 

;;: - 7 .",. - -/___~4t '\ 
" I ifT't' /' - \\"'..J,;. / ...- - -,f-: - .. -->. ' e-' 

h _. / x 

~ lJ-titj '"'(2)"" I //",'1'" .c e -' --.----~' '1.,
f 

where 	 e~l) & e~2) are the unit vectors pointing from the small line segment current 

sources (J d /') e~t) & (J d/') eJ2) respectively to the field point P (O,O,z) . 

(i) 	 Express e(l) & e(2) in terms of eO) . e(2) . e & a and then show that 
R 	 R p'p'z 

e(l) x e(l) + e(2) x e(2) - e 2 cos(a) 
'" R '" R - z 

(Hint· 	e(l) = - e(2) & eO) = - e(2) ) (7 marks)
• '" '" p p- JPo (e", I dl')x eR 	 ­

(ii) 	 From Biot-Savart law, i.e., B = find the magnetic field Bl' 

L 41l R 
at the field point P (O,O,z) produced by the given ring current source. 

(6 marks) 
(Hint: use "pair" addition in (b)(i) and then integrate for half ofthe ring.) 

(iii) 	 If z» a , find the approximate expression of jj from the result obtained in 

(b)(ii). Rewrite it in terms of magnetic dipole moment of the given current loop 

m where m I (1l a 2 
) and compare it with the approximate expression of E 

in (a)(ii). 

Show that replacing (:, Jby (Po m) they are identical. (4 marks) 
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Question two 

A U tube capacitor extended very long into z direction with its cross section as shown below: 

l~ 


~ 

~x 
3 I) 6 7 ------~ 

x 

Its electric potential f(x, y) in Cartesian coordinates for the region between two conductors, i.e., 
o::; x ::; a & 0::; y ::; b , satisfies the following two dimensional Laplace equation: 

0
2 f(~,Y) + 0

2 f(~,Y) = 0 . 
ox oy 

(a) Set f(x,y) = F(x) G(y) and use separation variable scheme 
(i) to deduce the following two ordinary differential equations : 

2 
_d_F_(x_) = k F(x) ...... (1) 

dx 2 

2 

d G(y) = _ k G(y) ...... (2) 

where k is the separation constant of any value. ( 4 marks ) 
(ii) Based on the given initial conditions indicated in the above diagram, explain why 

only the negative values of k are desirable? Thus k can be written as - K2 . 

(3 marks) 
(iii) By direct substitution, show that A cosh(K y) + B sinh(K y) ,where A & B are 

arbitrary constants, is a general solution to eq.(2) with k = - K2 where K is a 
positive constant and a better alternative for the separation constant.( 3 marks ) 
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Question two (continued) 

(b) The general solution for (a) is 

f(x,y) = IfK(X,y) 

'VK 


= I(AK cos(Kx) + BK sin(Kx))(CK cosh(Ky) + DK sinh(Ky)) ...... (3) 
'VK 

where AK , BK , CK & DK are arbitrary constants. This general solution is 

sUbjected to the following four boundary conditions: 
BC(l) fK(O,y)=O V O:5;y:5;b 

BC(2) fK(a,y)=O V O:5;y:5;b 

BC(3) fK(X,O) =0 V 0:5; x:5; a 

BC(4) f(x,b)=Vo V O:5;x:5;a 

(i) Apply BC(l) and deduce from eq.(3) that 

f(x ,y) = I(BK sin(K x))(C K cosh(K y) + DK sinh(K y)) ...... (4) 
'VK 

(2 marks) 
(ii) Apply BC(3) and deduce from eq.(4) that 

f(x,y)=I(BKsin(Kx))(DKsinh(Ky)) name (BKDK) as EK 
• 'V K 

= I(EK sin(Kx)sinh(Ky)) ...... (5) 
'VK 

(2 marks) 
(iii) Apply BC(2) and deduce from eq.(5) that 

J(x ,y) =t,[E. Sin(n:x)sinh( n: y J) ...... 	 (3 marks)(6) 

(iv) Apply BC(4) and find the values of En in tenns of Vo , a & b and show that 

2 V (1- cos(n7l')) 	 ..
E = 0 n = 1 2 3 ...... Also wrIte down the specIfic 

n • (li7l'bJ ' , , . 
n 7l'SInh - ­

a 


solution to this given boundary value problem. 	 (8 marks) 
o if n::l=m 

(Hint: fa sin(n 7l' xJ sin(m 7l' xJ d x = a if 
x=O a a {	- 1 n =m ) 

2 
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Question three 

A static current 1 flows in the primary coil of turn toroid, wired around an iron ring core ofnl 

magnetic permeability f.1 with the square cross-section area (b - ayas shown below: 

-------'-----­~/~-- --,
:r~,//' ~ ,b"" ~ 


.1 ir~":1 t // -", Y $4,..1.-­~1 	f!!ifl' ~ ~.; 
V, 11, Ii-~ 	 ~\ ll, tw.. 
~ 	 \' ~ 
\ • 'I i ! i 
" ' I ' t I 

1 ~
' 	 ~ , 	 I. \ 	 ~ 

• 	 <! }) 

(\\ ~ 	 I i~I 
I \ ~" 	 / /~, " .. 	 ;'~, '",-- /" P /" -----~. /'" 	 ' //

-"".. ()1) /,/ 
"'_"'__.. ____--- ,,~r /' 

(a) 	 Use the integial Ampere's law, choose and draw proper closed loops to find the magnetic 

field 13 in terms of p, nl , f.1 & 1 within the iron core, Le., 

a So p So b & 0 So z So (b - a) region. ( 1+6 marks) 

(b) 	 Find the total magnetic flux 'l'm passing through the cross-section area (b - aYofthe 

iron ring in counter clockwise sense, Le., 113. d'S where 

S: a So p So b , 0 So z So (b - a) & d'S = a, d p d z, in terms of a, b, n l , f.1 & I. 

(6 marks) 
(c) 	 Find the self-inductance L ofthe primary coil as well as the mutual inductance M of 

the secondary coil due to the primary coil in terms of a, b, f.1 , & n2 •n1 

(5 marks) 
(d) 	 (i) If the primary coil carries a sinusoidal current of 10 sin(mt) instead of carrying a 

static current 1 ,find the induced e.m.f. VI. (t) for the secondary coil in terms of 

a , b, m, , , f.1 & 10 under quasi static situation. ( 4 marks )n1 n2 

(ii) If the potential drop for the primary coil due to its resistance is negligible 

compared to the one due to its self-inductance, i.e., V; (t)::::: L d 1 ,show that 
dt 

IV2 (t) -~ (3 marks)Iv; (t ~ - n1 
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Question four 

(a) 	 The Maxwell's equations for the empty space are 

\1. E =0 (1) 


\1. B =0 (2) 


- - B B
\1x E =-- (3)

Bt 


- - BE
\1 x B = J-l & - •..... (4) 
o 0 Bt 

(i) 	 Deduce from them the following wave equation for B as 

2 - B2 B ­

\1 B = /I & - . . .. . . (5) 	 (4 marks)ro 0 	 Bt 2 

(ii) Given B= ex Bm cos(m t + m ~J-lo &0 Z+ ljJ) ,where Bm , m & ljJ are 

constants, 
(A) 	 by direct substitution show that it is a solution to eq.(5) in (a)(i). 

(4 marks) 
(B) 	 setting its corresponding solution of E as 

E=ex Ex (z ,t) + ey Ey (z ,t) + e E (z ,t) ,from eq.(3) deduce that z z 

EY{Z,t)=[~Jcos(mt+m~J-lO &0 z+ljJ) (6 marks)
J-lo &0 

(b) 	 An uniform plane wave traveling along + z direction with the field components 
" " 	 " . 0 VEx(z) & H/z) has a complex electric field amplitude E; =40e,50 - and 

m 
propagates at a frequency f =8 X 106 Hz in a material region having the parameters of 

a
J-l =8 J-lo , & =2 &0 & - =1 . 

m& 

(i) 	 Find the values of the propagation constant f (= a + i f3) and the intrinsic wave 

impedance ~ for this wave . 	 ( 4 marks ) 
(ii) 	 Express the electric and magnetic fields in both their complex and real-time forms, 

with the numerical values of (a)(i) inserted. ( 4 marks) 
(iii) 	 Find the values of the penetration depth, wave length and phase velocity of the 

given wave. (3 marks) 
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Question five 

An uniform plane wave (E';I ,fI; I) ,operating at f =108 Hz, is normally incident upon a 

lossless plate of quarter wavelength thickness, i.e., d2 = A2 , with parameters of 
4 

(.u2 = .uo , G2 =9 Go) as shown below: 

~2~ (fi2~ fz) fr~3 : (AD~ fie)1?1~ / ~ 00; ~D) 
" .A ".\) 2.A t _ A + -dl, ff t:;,~~i~~E t - E+ ;;.F2.(! 'EXi - EJnI ~ ,', . 

. I m.u.tbiI ~r~~': lAJIWel r - - ~ 7JfIk,.'I'i- t+- --+ ~eue At "'1­ '0+ _ E:!> . , ~ fig-I =-# Hdl =E;2­73'- ­"'I, 71~2. o.,.Lo3 	 3q 
~J 

A~ "_ ~ " " "I4:(!! EMI e ,t E; =-E - Jlzb­
1. n?2 e 

lJiWe t 
mit~~--	 d> ~~-J" ~-" HJ-;' ::: - :;:X2.;{~~:; - ::~ 


7f/ 
 d ?~ 
/ 

2 

, & are the respective origins for region 1 ,2 & 3 chosen at the first and second 01 O2 03 

interface. (Both region 1 and region 3 are air regions.) 

(a) Define for the fh region (i =1,2,3) the reflection coefficient ri(Z) and the total wave 

impedance Zi (z) and deduce the following: 

A () A 1+ ri (Z)
Zi Z = 7Ji A ( ) ( 6 marks )

l-ri Z 

(b) 	 (i) Find the values of YI , Y2 ' Y3 , A2 & "2 . 
(Note: "I ="3 =120" n and al=a2 =a3 =0) (4 marks) 

(ii) Starting with r3 (z) =0 for the rightmost region, i.e., region 3 , and using the 

boundary condition that Z is continuous at the interface, find the values of 

Z3(0) , Z2 (0) , r 2 (0) , r 2 (- dJ , Z2 (- dJ , ZI (0) & r l (0). 
(9 marks) 

iO(iii) Find the value of i~l & i;2 if given i;1 = 80 e V (6 marks) 
m 
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Useful informations 
e=1.6xlO- 19 C 

me = 9.1 x 10- 31 kg 

Po =4 7l' X 10- 7 	 H 
m 

6 0 =8.85x10- 12 F 
m 

a = w;;;& m;J-l..fi 

f3 ~ w;;;& 	 +1
..fi 

1r::-::- = 3 x 108 m 
'\j Po 6 0 S 

P 1 -1 ~ 
- j (a>&jtan ~6 

, 

q= VI + (:s)' 
e 2 

170 =120 7l' Q =377 Q 

f30 =W ~po 60 

#s E- ~ HL Pv d Vd s = 

#s E-ds=O 


( E- d [ = - :t(IIs E- d s ) 


1L E- d I = P Hs ] -d s + P 6 :t (IIs E- d S ) 


V- E= Pv 
6 

V-E 0 

aEVxE at 
- - - aE 
VxB=pJ+ P6 Eit 

J=aE 
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#s ft. d'S =fflv (V. ft) dv divergence theorem 

{ ft. dl = Hs (V xft). d'S Stokes'theorem 

V. (V x ft)=O 
Vx (V 1)=0 
Vx(Vxft)=V(V.ft)-V 2 ft 
VI - al - a - a _- a_I al _ aex -+ey +ez -ep +e; -+ez ­

ax ay az ap p a¢ az 

_ al _ 1 al _ 1 al 


=e -+e --+e ­, r are rae ; r sin(e) a¢ 

- / - a(F) a(Fy) a(F) 1 a(Fp p) 1 a(F;) aV.F=-_X + __ + __=_ + ___ +Z 

ax ay az p ap p a¢ az 

=_1 a(Frr2)+ 1 a(Fe sin(e)) + 1 a(F;) 


r2 ar r sin(e) ae r sin(e) a¢ 


Vx ft =e (a(FJ _ a(FJJ + e (a(F,j _ a(FJJ + e (a(FJ _ a(FJ] 
x ay az y az ax ax ayZ 

=_' (a(FJ _ a(F;, p)1 + e (a(Fp)_ a(FJ] + (a(F; p) _ a(Fp)1 

p a¢ a z ) ; azap pap a¢ ) 


= er (a(F; r sin(e)) a(Fe r)J + ee (a(Fr) _ a(F; r sin(e))]+ e; (a(Fe r) _ a(Fr)J 
r2 sin(e) ae a¢ r sin(e) a¢ ar r ar ae 

where ft =ex Fx +ey Fy +ez Fz =ep Fp + e; F; +ez Fz =er Fr +ee Fe +e; F; and 

dl =ex dx+ey dy+e dz=epdp+e; pd¢+e dz=er dr+ee rde+e; rsin(e)d¢ z z 

2 22 22 a a2 I a 1 a ( aIJ 1 a I a 
v I = a x2 + ax2 + a = pap p a p + p2 a¢2 + aZ2 

2 
=_1 ~ If r2 aIJ + 1 a (sin(e) aIJ + 1 a I

r2 ar ar r2 sin(e) ae ae r2 sin2(e) a¢2 

Z.( )= ~. 1+ rj(z) 'r~ ( )= Zi(z)-iij & 
I z rtl ~ ()' i Z ~ () ~ 1 - r i z Zj z + rti 

r i (z')=r
i 
(z)e2f,Cz'-Z) where z' & z aretwopointsin ithregion 

10 



