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P331 ELECTROMAGNETIC THEORY 

Question one 

(a) 	 (i) For any closed surface S, enclosing a volume V , the integral form ofcontinuity 
equation for electric charges in Electromagnetic theory can be written as 

fs j. d s = -	 :t (fv Pv d v) .Explain briefly the meaning of the left hand side 

and the right hand side of this equation and indicate which law in physics it 
describes. ( 3+1 marks ) 

(ii) 	 Use the divergence theorem to transform the above integral form ofcontinuity 
equation for electric charges into its differential form. ( 3 marks ) 

(iii) (A) 	 Show that without introducing the displacement current term, i.e., aDat 
in the equation for Ampere's law, i.e., Vx ii = j instead of 

- - - aD'1 x H 	= J + - ,Maxwell's equations would contradict the at 
continuity equation for electric charges. 	 ( 2 marks ) 

(B) 	 Show that by including the displacement current term, Maxwell's equations 
are in agreement with the continuity equation. ( 4 marks ) 

(b) 	 (i) From the time-independent Maxwell's equations deduce the following Poison's 
equation for the electric scalar potential f in free space as 

'12f =_ Pv where E==-V f 	 (3 marks) 
8 0 

(ii) 	 The Pointing vector R == r- r' eRR is from the source point 

;' == ex x' + ey y' + e z' toward the field point ; == ex x + ey y + e z . By direct z 	 z 

R J(x - x'Y + (y - y'Y + (z - z'Y 
i7 _a _a_a 
v ---t ex + ey + ezevaluation of 	 v(~) where ax 	 ay az 

(x - x') _ (y - y') _ (z z') 
e y + ey + e,eR 
~ R R" R 

show that -e -	 (6 marks)
RV(~) 

_ 	

R2 

1 

(iii) 	 Assuming the solution for the Poison's equation in (b )(i) is 

f(x,y, z) = IH . Pv (x' ,y' ,z') d x' d y' d z' ,use the result in (b)(ii) and 
source pO lilt .I' 4 J( 8 R 

0 

E - Vf to deduce that 


-( ) - - Pv ( X ,y, z d' d 'd I
')JE x,y,z -	 I I 
J x y z which is just the eRIIl.l'ouJ'ce points ( 4 J( [;0 R­

Coulomb's law. (3 marks) 

2 



Question two 

A V -	 tube capacitor is extended very long into z direction with its cross section as shown below: 

j 

,,,,",,',".
!==Vo ..-/' 

a.. i l
,m ,_' ~I f=o 


i~-'/ 1 \\

! ~//
i~ 

""">x 

The electric potential f(p, ffo) 	 in cylindrical coordinates for the region between two conductors, 

i.e., 0::; p ::; a & 0::; ffo ::; iC , satisfies the following two dimensional Laplace equation: 
2 

o( a f(P,ffo)] 
p Pap + o2f(p,ffo) =0 

a p Offo2 

(a) 	 (i) Set f(p,ffo) = F(p) G(ffo) and use separation variable scheme to deduce the 

following two ordinary differential equations : 

d F(P)]
d ( p dp 


- k F(p) (1)
p 	 dp 
2 

d G(ffo) = k G(ffo) (2)
d ffo2 

where k is a separation constant of any value. ( 4 marks ) 
(ii) 	 Based on eq.(2), i.e., differential equation for ffo , explain why the eigenvalues for 

k are k=-m 2 where m=1,2,3,····· (3 marks) 

(iii) 	 By direct substitution, show that pm & p - m are the two independent solution to 

eq.(1) with 	k = - m 2 
• (3 marks) 
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Question two (continued) 

(b) The general solution for (a) is 
<Xl 

f(p,ljJ) = Lfm(p,ljJ) 
m =1 

= f(Am pm + Bm p-m )(Cmcos(mljJ) + Dm sin(mljJ)) ...... (3) 
m 1 

where Am , Bm ' Cm & Dm are arbitrary constants. This general solution is 

subjected to the following four boundary conditions : 

BC(l) fm (0 ,ljJ) = 0 V 0"5, ljJ"5, 	1f 

2 


BC(2) fm(P,O)=O V O"5,p"5,a 

1f
BC(3) fm(P'"2) = 0 V 0"5, p"5, a 

BC(4) f(a,ljJ)=Vo V O"5,ljJ"5, 
1f 

2 
(i) 	 Apply BC(1) and deduce from eq.(3) that 

f(p,¢) = f(Am pm hCmcos(mljJ) + Dm sin(mljJ)) . ..... (4) (2 marks) 
m 

(ii) 	 Apply BC(2) and deduce from eq.(4) that 

f(p,ljJ) = f(Am pm )(Dm sin(mljJ)) name (Am DJ as Em 
m =1 	

(2 marks) 

= f(Em pm sin(mljJ)) ...... (5) 
m=! 

(iii) 	 Apply BC(3) and deduce from eq.(5) that 

f(p,ljJ) f(Fn p2n sin(2nljJ)) . ..... (6) 
n=1 	 (3 marks) 

where 	 F == E2n & n =1 2 3 ..... . , ,n 	 , 

(iv) 	 Apply BC(4) and find the values of Fn in terms of Vo , a & n and show that 

F 2 Vo (1 - cos(n 1f)) 
n 	 n=1,2,3,.····· (8 marks) 

n 1f a 2 n 

7r fO if n:t:-m 

(Hint: 12 sin(2nljJ)sin(2mljJ)dljJ = l1f if )


1>=0 	 - 1 n In 
4 
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Question three 

(a) 	 The point form of Ohm's law in a conductive region of conductivity (j is J = (j it 
where J & it are the current density and electric field respectively. Show that it can lead 

to the commonly known Ohm's law V =I R for a conducting wire oflength L , 

cross-sectional area A , total flowing current I and the terminal voltage across the wire V 

where R = - L . 	 ( 5 marks ) 
(jA 

(b) 	 According to modified Drude's model of electric conduction in the conductive material 

with conductivity (j under the applied electric field it , the equation of motion for an 
average conduction electron in the conductor is 


dv - 2 m v ( )
m. -dd == e E - d...... (1) where - e & me are the charge and mass ofIf 

t 	 7:c 

an electron respectively. 

(i) 	 Explain briefly the meaning of Vd , 7:c & (- 2 me Vd J in the above equation. 
7:c 

(4 marks) 

(ii) In the steady state situation, I.e., d. d = 0 ,use the equation ofmotion and the 
dt 

point form of Ohm's law to deduce that 
2 

(j =	!!...!!..- 7:c where n == number density of conduction electrons 
2 me 

(Hint: J = p v Vd = - n e Vd ) 	 (6 marks) 

(iii) 	 The pure metal potassium K possesses the following data at room temperature as 

atomic number == 39.098 , density =871 k~ and 
m 

conductivity =1.4 x 107 1 

Om 


(A) 	 Calculate the number density of conduction electrons of the metal 
potassium with the knowledge ofeach potassium atom contributes one 
conduction electron. ( 3 marks) 

(B) 	 Find the value of 7:c for metal potassium at room temperature. 

• 	 2 atoms
(Hmt : Avogadro number 6.023 x 10 6 ) ( 3 marks)

kg-mole 

(iv) In the time-harmonic situation, i.e., it == eE Eo cos(mt) Re{Eo ei(j)l} ,set 
i 

Vd == eE Vd cos(mt + t/J)= eE Re{vd e ifU '} where Vd == Vd e ¢ ,use eq. (1) to 

~ e •C Eo . (4 marks)deduce that vd = - 2 me + i m me 7:c 
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Question four 

(a) 	 A static current II flows in the N 1 turn toroid wired around an iron core of cross section 

radius a and permeability /-l, with its central axis coinciding with the z-axis as shown 

below: 

.1
f 

["",'9I' 

I I 

inbtd 
fo;>e.c..J, 

~iZtvmr 

\ T 
c 1­t.1 L/~f~K4 1 

IL,¥ 7/ I 
1;:--"\ 

,.....~"; 

(i)' 	 Use the closed loop (II + 12 + 13 + IJ drawn in the given diagram where 

~ = e" b (outside the core),f2 = - e c, ~ = - e" b (inside the core) & ~ =e c,p 	 p 

set jj =e B (p) for p:::; a & B=0 for p > a and use the integral z z 

-	 - /-IN
form ofAmpere's law to find B and show that B = e T I) for p:::; az 

I 

(5 marks) 
(ii) 	 Assuming the same jj obtained in (a)(i) is maintained throughout the iron core 

(which is a good assumption when /-l» flo ), find the total magnetic flux 'Pm 

passing through the cross-section area 7r a 2 of the iron core, i.e., 

'Pm = 1B. d s where d s pdp d ¢ , 0:::; p :::; a & 0:::; ¢ :::; 27r , and 

2 
7r a I 

I' 	 (2 marks)show that 'Pm 
L] 
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·Question four (continued) 

(iii) 	 Find the mutual inductance M between the primary and secondary coils and the 

self-inductance Li of the primary coil in terms of a, LI , NI , N2 & fl. 

(3 marks) 
(Hint: The total magnetic flux passing through the primary and secondary coils are 
Nl "Pm 	 & N2 "Pm respectively where "Pm is obtained in (a)(ii)) 

(iv) 	 Find the induced e.m.f. V(t) of the secondary coil in terms of 

a , LI , NI ' N 2 ,fl ,10 & CrJ if the primary coil carries a sinusoidal current of 

10 sin(CrJt) instead ofcarrying a static current II . (2 marks) 

(b) 	 The Maxwell's equations for the material region of parameters fl ,S & CY are 

'1. E =0 (1) 

V. B=0 (2) 


- - aB

'1xE=--	 (3)at 
- - - aE
'1xB=flCYE+flS- ...... (4)

at 
(i) 	 Deduce from them the following wave equation for E as 


2 - ai!; a2 i!;

V E -	 fl CY - - fl S - =0 ...... (5) . (4 marks)at a ~ 

(ii) Set i!; as (E(space) ei WI) and substitute it into the above wave equation, 

to deduce the following time-harmonic equation for i(space) as 

'12 i(space) - 92 i(space) =0 where 9=~i CrJ fl CY - CrJ2 fl S 

(3 marks) 
(iii) 	 Set the propagation constant 9== a + i f3 , to deduce that 

(6 marks)a = 010 .I~I +(:8)' -I 
(0) Jl- cos(O) 	 {~ 2 )-1(Hint: 	sin 2 = 2 & cos(O)= ~ 1 + tan (0) ) 
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Question five 

(a) 	 An uniform plane wave traveling along + z direction with the field components 
A i'!.. V 

Et(z) & Hy(z) has a complex electric field amplitude E; =100 e 6 - and 
m 

propagates at a frequency f =5 x 107 Hz in a material region has the parameters of 

fl flo , 5 = 2 50 & -
u 

= 0.3 . 
OJ5 

(i) 	 Find the values of the propagation constant r (= a + i fJ) and the intrinsic wave 

impedance ~ for this wave . ( 4 marks ) 
(ii) 	 Express the electric and magnetic fields in both their complex and real-time forms, 

with the numerical values of (a)(i) inserted. (4 marks) 
(iii) 	 Find the values of the penetration depth, wave length and phase velocity of the 

given wave. ( 3 marks ) 
(b) 	 An uniform plane wave is incident normally upon an interface separating two regions . 

" ,... ... A E+ 	 " 
Y1z

ATheincidentwaveisgivenas E;t =E;] e- r1Z ,H;t = ~l e- J and thus the 
[ 

,... '" .. '" E- ... 
Areflected and transmitted wave can be written as E;1 = E: 1 e+ rl Z , H;1 = - ~ I e+ YI Z J 

[ 

,... 	 '" ... '" E: 2 •
and E+ E+ e- Yz Z H+ =-- e- Yz Z J respectively as shown below' 

x2 m2 'y2"
A 

• 
[ Til 

R~(tM.. ( ~ (i1~ I &, (7) R{;~1f,. 2 ; (p2., ?:.ll 0;)
A 	 ~ I ~ . u 	 V 

;'\ L . . 	 I, ..
T'T I;;) 	 ,.... '" ' 
';"'X"5f 	 t r.a \}"lI 

A .. ", ! j... .( I 	 ~ .'. " ~I t lJtc';il..;.J :~ 	 tl~WlJIflltt;li"! 

I· " ,t 1-, "
1"1{ 	 • ,- -lO> '/~.mAL"I .' ('~,l~ __ + "',' ,II 

(J ~t ".1...~<:.._ I' f/Ul .II , .;:..wz,ve... 
- 1:./.1 '! fI .~ t 

'~-~_ '-Xl 


"1 -, T 

,.j 	 't•. 
-----~ 	 -~--~.. 

-<
" _,A-." 

1 

I 
_/l t":.%P~~";J."

!
)-1,.•. 
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Q~estion five (continued) 

(i) 	 From the boundary conditions at the interface, i.e., both total Ex & ify are 

continuous at z 0, deduce the following 
A A

E- = E+ 172 -171 
ml 	 ml ~ ~ 

172 + 171 (9 marks)
E+ - E+ 2 i12 

m2 -	 ml ~ ~ 

172 + 171 
(ii) 	 If region 1 is air (i.e., i11 =120 1! =377 Q), region 2 is a lossy medium with 

parameters of [P2 = Po ,&2 =9 &0 ,~= 1) ,and the incident plane wave is 
OJ &2 

having a complex amplitude of E; 1 = 60 e i 50° V and propagates at a frequency of 
m 


/=10 6 Hz . 


(A) 	 Calculate the value of i12' (2 marks) 

(B) 	 Calculate the values of E; 2 (3 marks) 
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Useful informations 
e 1.6 x 10- 19 C 

me =9.1 X 10- 31 kg 

f.10 =4 Jr X 10 - 7 H 
m 

8 0 =8.85xlO- 12 F 
m 

_mfIU I~(J2 -1(J' 

a- J2 Vvl+l~) 

- OJ flU III + (~J2 + 1 
13­ ' ­ V~ m8 

1 = 3 X 108 m 
s 

r;~-;; ei 1 -l(~)
2 tan w& 

ry~ ':I+(:&J' 

170 = 120 Jr n = 377 n 
130 =OJ ~ f.10 80 

11 E. d s = ~ HI Pv d v 

<ffs jj.ds 0 

{ E. d T= - :t (JL jj. d s ) 

{ B. dT= f.1 Hs ]. d s + f.18 :t (JI~ E. ds ) 

V.E= 
8 

V.B 0 

- - aBVxE=­ at 
- aE

VxB f.1J+f.18 at 
]=(J'E 

10 
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#s p. ds=fflv (v. p) dv divergence theorem 

1L p. d l = Hs (V xp). ds Stokes' theorem 

V.(Vxp)=O 
Vx(Vf)=O 
Vx(Vxp) V(V.p)-V 2 p 
Df - - a - af - af - 1 af _ a=e +e +e -=e -+e -+ev Xax Yay zaz pap "'patjJ zaz 

_ af _ 1 af _ 1 af 
=e -+e --+e ­r ar 0 r ae '" r sin(e) atjJ 

V. P= a(FJ + a(Fy) + a(FJ =! a(Fp p) + 1 a(F",) + a(FJ 
ax ay az p ap p atjJ az 

=_1 a(Fr r2) + 1 a(Fo sin(e)) + 1 a(F",) 

r2 ar r sin(e) ae r sin(e) atjJ 


Vx P=e (a(FJ _ a(FJJ + e (a(FJ _ a(FJJ + e (a(Fy)- a(FJJ 
x ay az y az ax ax ayZ 

= (a(FJ _ a(F",. p)J + e (a(FJ a(FJJ + ez (a(F", p) - a(Fp )J 
p atjJ az '" az ap p ap atjJ 

= er (a(F", r sin(e)) _ a(Fo r)J + eo (a(FJ _ a(F", r sin(e))J + e", (a(For) _ a(FJJ 
r2 sin(e) ae atjJ r sin(e) atjJ ar r ar ae 

where P= ex Fx + eyFy + ez Fz = epFp + e", F", + ez Fz = er Fr + eo Fo + e", F", and 

dl =exdx+eydy+e dz=epdp+e", pdtjJ+ez dz=erdr+eorde+e", rsin(e)dtjJ 
2 

2 a a2f a
z 

2f 1 a ( a fJ 1 a2 f a2f 
v f= ax2 + ax2 + ax2 = pap p ap + p2 atjJ2 + az2 

2 
=_1 ~ (r2 afJ + 1 ~ (sin(e) afJ + 1 a f

r2 ar ar r2 sin(e) ae ae r2 sin2(e) atjJ2 
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