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P262 Computational Methods I

Question one

Given the following non-homogeneous ordinary differential equation as

4 YO 2979 5 5y =10 sin(r) + 13 cos(31)
dt dt

(a) find its particular solution y () , (9 marks)

(b)  find the general solution y,(r) for the homogeneous part of the given
differential equation, (4 marks )

(c) find the general solution y, (#) for the above given non-homogeneous
differential equation, (2 marks)

(d) if given initial conditions as p(0)=9 and L310] =1 find its

dt ’

t=0

specific solution of () ,ie., y (f) .Plot y () for t=0 to 30 and

make a brief comment on its large ¢ behavior. (10 marks )



Question two

Given the following differential equation as

& y(x) dy)

+8y(t)=0
dx’ ar T8
set  y(x)= Z a, x"*° and a, #0 , utilize the power series method and
n=0
(a)  write down the indicial equations and find the values of s and possibly the

(b)

(c)

valueof a, (if a, isintermsof a, and s,then find the possible values
of a, bysetting g, =1) ( 7 marks )
write down the recurrence relation. Set a, =1 and use the recurrence relation to
find the valuesof a, ( n=2 to 10 ) foreach value of s foundin (a).
Write down two independent series solutions truncated up to q,, term.

(8 marks)

(1) write the general solution for the above given differential equation,

(2 marks)
.. cp e e e . d y(x)
(ii)  if given initial conditionsas »(0)=3 and ————= =-1,findthe
x
x=0
specific solution and plotitfor x=0 f 1 . (8 marks)



Question three

Given the following differential equations for a coupled oscillator system as

d? xlz(t) =—4x,(0)+3 x,(f)
dt
50 55 -5%,0)
dt

(@ set x,(f)= X L€ and x,()=X, e'®" , deduce the following matrix

equation 4 X =-w>X  where

-4 3 X,
A= and X = , (4 marks)
2 -5 X, _
b @G find the eigen frequenciesof o , (4 marks)
(ii)  find the eigen vectors of X (4 marks)

(©) @) write down the general solutions of x,(f) and x,(f) interms of the
eigenfrequencies and eigenvectors obtained in (b) , (4 marks)
(ii)  ifinitial conditions are given as

dx, () dx,(1)
x1(0)=2 s x2(0)=_4 s T =-—1 and —-72}—— =1,

t=0 t=0
find the specific solutions of  x,(f) and x,(t) . Plot both
x,(t) and x,(tf) for t=0 fto 10 and show them in a single

display. (9 marks)



(@

(b)

Question four
Given a scalar function f=5xy*+2yz*-3xyz ,
(i) findthe valueof V f atthepoint P:(1,-1,2), (3 marks)
(i)  find the directional derivative of f atthe point P:(1,-1,2) along
the direction of (¢, 2-2, 3 +hé,) ,ie,[2,-3,1]. (4 marks)

Given a vector field F =g, (5 y2)+ €, (IOx y—622)+ g, (-12yz),ie,

ﬁ=[5y2,10xy-622,-12yz],ﬁndthevalueofthelineintegralof F

from the point P;:(1,6,0) tothe point P,:(3,2,0) along a line path of

—

Lie, [, Fedl ,

@) if L : astraightline from P; to P, on z=0 plane, (8 marks)

(ii) if L : ahyperbolic path described by y = g from P; to P, on z=0
plane . Compare this answer with that obtained in (b)(i) and comment on
whether the given F is a conservative vector field or not., ( 7 marks )

(iii) use potential command to find out whether the given F isa

conservative vector field or not. If yes, then find its associated scalar

potential. (3 marks)



Question five

One-dimensional wave equation for a vibrating elastic string of length L can be written as

2 2
0" ulx,1) =¢? 0 u(f’r) where u(x,?) is alongitudinal vibration amplitude function

ot? 8x
and ¢ is a constant.

(@)  The general solution of the given partial differential equation can be written as
u(x,t) = Z”k (x,0)
Yk
=" (4, cos(kx)+ B, sin(kx))(C, cos(c kx)+ D, sin(ckx))
Vi

where A, ,B, ,C, & D, are arbitrary constants.

Applying two fixed end conditions (i.e., ,(0,¢) =0 =wu,(L,?) ) and zero initial

speed condition (i.e., W =0 ), deduce from the above general
1=0
solution that u(x,) = ZEn sin(mzx] cos(c n;zt‘}
n=1
where E; (n=1,2,3,..... ) are arbitrary constants. ( 8 marks)

() if c¢=5, L=10 and the initial position of the string is given as

3x if 0<x<4

0)=
4(x0) {—2x+20 if 4<x<10

1) find the valuesof E, ,E, ,E,, - , E,; . Write down the specific
solution of u(x,t) inits series expressionupto E,, term.

(11 marks)
(i)  plot the solution obtained in (b)(i) at t=0,t=1and t =2 respectively,

i.e., u(x,0),u(x,1)and u(x,2) , for the range of x values from x =0 to

x = 10. Show them in a single display. ( 6 marks)



