FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION

2010/2011

TITLE OF PAPER:

DIGITAL ELECTRONICS

COURSE NUMBER:

P411

TIME ALLOWED:

3 HOURS

INSTRUCTIONS:

ANSWER ANY FOUR OUT OF SIX QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN ENCLOSED IN SQUARE BRACKETS.

THIS PAPER HAS 6 PAGES INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

1 /	i) Find the equivalent Hex value for the BCD coded number 10101110101 _{BCD} .			
1 (
(b) What is bus fight of logic gates and how can it be avoided?	[2]		
(c) Draw the circuit of a basic two-input TTL NAND gate with an open collector	r. [2]		
(d) Explain what a wired-AND is, using an example.	[4]		
(e) Show that the output of three shorted open-collector NOR gates acts as a six NOR gate.	input [4]		
(f) What is the logic function, F, of the circuit in Fig. 1 of the Appendix A?	[6]		
	(a) Use any Karnaugh map as an example to distinguish between an implicant, plicant and an essential prime implicant.	a prime [6]		
	(h) Use the Quine-McCluskey method to find the output function. E in the tru	ith table		

- (b) Use the Quine-McCluskey method to find the output function, F, in the truth table given in Fig. 2 of the Appendix B; A,B,C and D are inputs. [13]
- (c) Explain what a comparator does and how the two-input XNOR gate acts as a simple one-bit magnitude comparator. [6]
- 3 (a) Implement the function $f(x,y,z) = \sum m(1,2,6,7),$ using a 4 to 1 multiplexer. [6]
 - (b) Implement the adder carry function C(X, Y, Z) using a multiplexer. [7]
 - (c) Implement the adder sum function S(X, Y, Z) using a multiplexer. [8]
 - (d) Design a Dual 4 to 1 Multiplexer-based full adder. [4]
- 4 (a) Explain what a parity bit is and make a truth table with three input bits, x, y and z producing one output odd parity bit P. [5]
 - (b) Show how you can implement P in (a) with a three-variable XNOR gate. [5]
- (c) Make a truth table for a parity checker circuit which will have four inputs x, y, z and P with one output, E (error), which will be 1 whenever there is a parity error; E will be 1 whenever P is not the odd parity bit for the values of x, y and z. [5]
- (d) Show that the function, E, in (c) can be implemented as an XNOR of the four input variables. [7]

- (e) Make a figure in which a parity generator and parity checker are represented with block diagrams to show how data with a parity bit is transmitted and received. Include LEDs that indicate the values of P and E. [3]
- 5 (a) Design a 2 to 4 binary decoder with inputs S1, S0 and EN, where EN is an enable input. The outputs should be labeled Q0, Q1, Q2 and Q3. [7]
 - (b) Make a truth table for a 3 to 8 decoder and design one using 2 to 4 decoders.
 - [/]

[2]

- (c) Draw the logic circuit of a master-slave SR flip flop using NAND gates. [5]
- (d) Construct a modulus 10 asynchronous decade counter and use it to explain what truncated states are. Use logic symbols for the flip flops without including their logic circuits.
- 6 (a) Distinguish between volatile and non-volatile memory.
- (b) (i) What is the memory capacity of a cell with 8 bit locations from 000H to FFFH in Hex? [5]
 - (ii) How many address lines are required for the memory cell in (i)? [3]
- (c) Most microprocessor units have a group of single bit registers called condition code registers or flags. Name three flags; you do not have to explain how they function.
- (d) (i) Explain, using an example, how repeated subtraction may be used to accomplish division.

 [4]
- (ii) Draw a flowchart which shows the sequence of steps to be taken in accomplishing division by repeated subtraction on a microprocessor. Use **Appendix C** to write the corresponding assembly language mnemonics along side the flowchart for each step. You do not need to include the operation codes in Hex. [8]

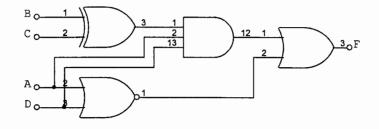


Figure 1

APPENDIX B – TRUTH TABLE

No.	Α	В	С	D	F
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	· 1	1
14	1	1	1	0	0
15	1	1	1	1	1

Figure 2

APPENDIX C – 8085 MNEMONICS

JUMP	CALL	RETURN	MOVE	
C3 JMP C2 JNZ CA JZ	CD CALL C4 CNZ CC CZ	C9 RET C0 RNZ C8 RZ	40 MOV B,B 41 MOV B,C 42 MOV B,D	60 MOV H,B 61 MOV H,C 62 MOV H,D
D2 JNC	D4 CNC	D0 RNC	43 MOV B,E	63 MOV H,E
DA JC	DC CC	D8 RC	44 MOV B,H	64 MOV H,H
E2 JPO	E4 CPO	E0 RPO	45 MOV B,L	65 MOV H,L
EA JPE	EC CPE	E8 RPE	46 MOV B,M	66 MOV H,M
F2 JP	F4 CP	FO RP	47 MOV B,A	67 MOV H,H
FA JM	FC CM	F8 RM		
E9 PCHL			48 MOV C,B	68 MOV L,B
MOVE	4	LOAD	49 MOV C,C	69 MOV L,C
MOVE	Acc	LOAD	4A MOV C,D	6A MOV L,D
IMMEDIATE	IMMEDIATE	IMMEDIATE	4B MOV C,E 4C MOV C,H	6B MOV L,E
06 MVI B	C6 ADI	01 LXI B,	4C MOV C,H 4D MOV C,L	6C MOV L,H 6D MOV L,L
0E MVI C,	CE ACI	11 LXI D,	4E MOV C,M	6E MOV L,M
16 MVI D,	D6 SUI	21 LXI H,	4F MOV C,A	6F MOV L,A
1E MVI E,	DE SBI	31 LXI SP,	11 110 7 0,11	01 1410 4 12,71
26 MVI H,	E6 ANI	21 211 02,		
2E MVI L,	EE XRI		50 MOV D,B	70 MOV M,B
36 MVI M,	F6 ORI	DOUBLE ADD	51 MOV D,C	71 MOV M,C
3E MVI A,	FE CPI		52 MOV D,D	72 MOV M,D
		09 DAD B	53 MOV D,E	73 MOV M,E
*		19 DAD D	54 MOV D,H	74 MOV M,H
INCREMENT	DECREMENT	29 DAD H	55 MOV D,L	75 MOV M,L
		39 DAD SP	56 MOV D,M	
04 INR B	05 DCR B		57 MOV D,A	77 MOV M,A
OC INR C	0D DCR C	I O A D/CTODE	co MOVED	70 MOV 4 D
14 INR D 1C INR E	15 DCR D 1D DCR E	LOAD/STORE	58 MOV E,B	78 MOV A,B
24 INR H	1D DCR E 25 DCR H	0A LDAX B	59 MOV E,C 5A MOV E,D	79 MOV A,C 7A MOV A,D
2C INR L	2D DCR L	1A LDAX D	5B MOV E,E	7B MOV A,E
34 INR M	35 DCR M	2A LHLD	5C MOV E,E	7C MOV A,E
3C INR A	3D DCR A	3A LDA	5D MOV E,L	7D MOV A,II
oo nac n	3D DOR II	311 22 11	5E MOV E,M	7E MOV A,M
03 INX B	0B DCX B	02 STAX B	5F MOV E,A	7F MOV A,A
13 INX D	1B DCX D	12 STAX D		
23 INX H	2B DCX H	22 SHLD	ACCUMULATOR	
33 INX SP	3B DCX SP	32 STA		
			80 ADD B	A0 ANA B
			81 ADD C	Al ANA C
RESTART ROTATE		SPECIALS	82 ADD D	A2 ANA D
Ca Pca o	05 57 6	ED MONO	83 ADD E	A3 ANA E
C7 RST 0	07 RLC	EB XCHG	84 ADD H	A4 ANA H
CF RST 1 D7 RST 2	0F RRC	27 DAA 2F CMA	85 ADD L 86 ADD M	A5 ANA L A6 ANA M
DF RST 3	17 RAL 1F RAR	37 STC	86 ADD M 87 ADD A	A6 ANA M A7 ANA A
E7 RST 4	II NAN	3F CMC	מעא זיס א	A/ ANA A
D, KOI T		Ji Civic		

EF F7 FF	RST 5 RST 6 RST 7	CONTROL 00 NOP		INPUT/OUTPUT		88 ADC B 89 ADC C 8A ADC D	A8 XRA B A9 XRA C AA XRA D
• •	RD1 /	20	RIM	D3	OUT	8B ADC E	AB XRA E
		30	SIM	DB		8C ADC H	AC XRA H
		76	HLT	DD	114	8D ADC L	AD XRA L
				CT.	ACK ODE		
		F3	DI	517	ACK OPS	8E ADC M	AE XRA M
		FB	EI	0.5	DYIOTY D	8F ADC A	AF XRA A
		2B	BMI	C5	PUSH B		
				D5	PUSH D	90 SUB B	B0 ORA B
				E5	PUSH H	91 SUB C	B1 ORA C
				F3	PUSH PSW	92 SUB D	B2 ORA D
						93 SUB E	B3 ORA E
				C1	POP B	94 SUB H	B4 ORA H
				D1	POP D	95 SUB L	B5 ORA L
				E1	POP H	96 SUB M	B6 ORA M
				F1	POP PSW	97 SUB A	B7 ORA A
				E3	XTHL	98 SBB B	B8 CMP B
				F9	SPHL	99 SBB C	B9 CMP C
						9A SBB D	BA CMP D
						9B SBB E	BB CMP E
						9C SBB H	BC CMP H
						9D SBB L	BD CMP L
						9E SBB M	BE CMP M
						9F SBB A	BF CMP A
						FI SDD A	Dr Civir A

END OF P411 EXAMINATION