UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2010/2011

TITLE OF PAPER

ELECTROMAGNETIC THEORY I

COURSE NUMBER

P331

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE

QUESTIONS.

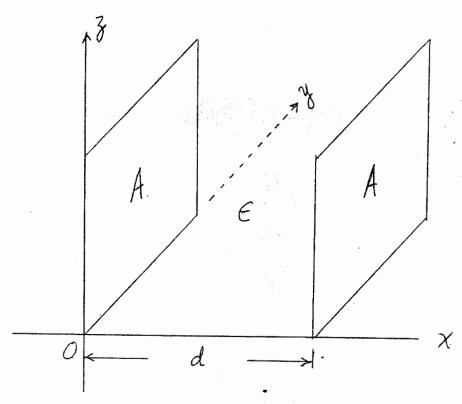
EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS <u>NINE</u> PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

(a) For a two-parallel conducting plate capacitor system as shown in the following diagram

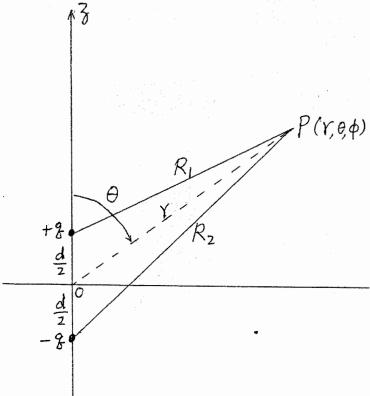


where A is the plate surface area, d is the plate separation and ε is the dielectric constant of the insulating material layer in-between the two plates.

- (i) From $\nabla^2 f(x) = 0$ with boundary conditions of f(x = 0) = 0 and $f(x = d) = V_0$, find the specific solution of f(x), (4 marks)
- (ii) find \vec{E} from f(x) obtained in (a)(i), (3 marks)
- (iii) find ρ_s on x=0 and x=d respectively. Then find the total charges on both surfaces with surface area A and show that they are equal and opposite.

 (5 marks)

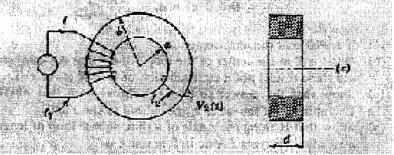
(b) For an electric dipole situated at the origin, i.e., +q situated at $z=\frac{d}{2}$ & -q situated at $z=-\frac{d}{2}$ along z-axis, the electric potential Φ at the space point $P:(r,\theta,\phi)$ due to this dipole is $\Phi=\Phi_1+\Phi_2$ where $\Phi_1=\frac{+q}{4\pi\;\varepsilon_0\;R_1}$ and $\Phi_2=\frac{-q}{4\pi\;\varepsilon_0\;R_2}$, as depicted in the following diagram



- (i) for r >> d, use $R_1 \approx r \frac{d}{2}\cos(\theta)$ and $R_2 \approx r + \frac{d}{2}\cos(\theta)$, deduce that $\Phi \approx \frac{p\cos(\theta)}{4\pi \varepsilon_0 r^2}$ where p = q d is the electric dipole moment.
- (ii) from Φ in (b)(i), deduce that the electric field at far away point from the electric dipole source situated at the origin given in the above diagram is

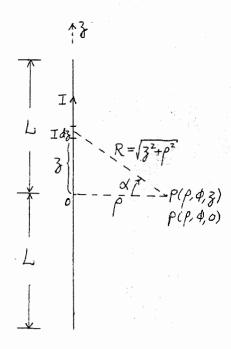
$$\vec{E} = \frac{p}{4 \pi \varepsilon_0 r^3} (\vec{e}_r 2 \cos(\theta) + \vec{e}_\theta \sin(\theta))$$
 (6 marks)

(a) A static current I flows in the n_1 turn toroid l_1 wiring around a iron ring core of magnetic permeability μ with the rectangular cross-section area $(b-a)\times d$ as shown below



- (i) use integral Ampere's law, choose proper closed loops to find \vec{B} in terms of ρ , n_1 , μ & I within the iron core, i.e., $a \le \rho \le b$ & $0 \le z \le d$ region, (7 marks)
- (ii) find the total magnetic flux Ψ_m passing through the cross-section area $(b-a)\times d$ of the iron ring in counter clockwise sense, i.e., $\int_S \vec{B} \cdot d\vec{s}$ where $S: a \le \rho \le b$, $0 \le z \le d$ & $d\vec{s} = \vec{a}_{\phi} d\rho dz$, in terms of $a, b, d, n_1, \mu \& I$. (6 marks)
- (iii) find the external self-inductance L_e of the toroid wire l_1 in terms of a, b, d, $\mu \& n_1$. (3 marks)
- (b) Placing a single turn secondary coil l_2 around the iron ring, if the toroid wire l_1 carries a sinusoidal current of $I_0 \sin(\omega t)$ instead of carrying a static current I, find the induced e.m.f. $V_2(t)$ for a single turn secondary coil l_2 in terms of a, b, d, ω , n_1 , μ & I_0 under quasi static situation. If a = 7 cm, b = 10 cm, d = 2 cm, $n_1 = 100$, f = 300 Hz, $\mu = 4000$ μ_0 and $I_0 = 2$ A, compute the amplitude of $V_2(t)$. (9 marks)

- (a) For the time-independent (or static) case, setting $\vec{B} = \vec{\nabla} \times \vec{A}$ and using Coulomb's gauge, i.e., $\vec{\nabla} \cdot \vec{A} = 0$, to deduce the following Poisson's equations for \vec{A} from Maxwell's equations as $\nabla^2 \vec{A} = -\mu \vec{J}$. (5 marks)
- (b) A straight thin conducting wire of length 2L carries a total current I along +z direction as shown in the diagram below:



(i) find the z-component of vector potential \vec{A} , i.e., A_z , due to the above given current at a point $P:(\rho,\phi,0)$ by evaluating the following integral

$$A_{z} = \int_{z=-L}^{L} \frac{\mu_{0} I dz}{4 \pi R} = 2 \int_{z=0}^{L} \frac{\mu_{0} I dz}{4 \pi \sqrt{z^{2} + \rho^{2}}} \quad \text{and show that}$$

$$A_{z} = \frac{\mu_{0} I}{2 \pi} \left(\ln \left(\frac{\sqrt{\rho^{2} + L^{2}} + L}{\rho} \right) \right) \qquad (10 \text{ marks})$$

$$(\text{Hint:} \quad d \tan(\alpha) = \sec^{2}(\alpha) d\alpha \quad \& \quad 1 + \tan^{2}(\alpha) = \sec^{2}(\alpha)$$

$$\int \sec(\alpha) d\alpha = \ln(\sec(\alpha) + \tan(\alpha))$$

(ii) From $\vec{B} = \vec{\nabla} \times \vec{A}$ and knowing $A_{\rho} = 0 = A_{\phi}$, find the magnetic field \vec{B} at the point P due to the above given current. In the case of $L >> \rho$, show that magnetic field \vec{B} obtained here can be simplified to $\vec{B} = \vec{a}_{\rho} \frac{\mu_0 I}{2 \pi \rho}$. (10 marks)

(a) Starting with the following time harmonic Maxwell's equations for a material region represented by parameters of μ , ε & σ as

$$\begin{cases}
\vec{\nabla} \bullet \vec{\hat{E}}(\vec{r}) = 0 & \cdots & (1) \\
\vec{\nabla} \bullet \vec{\hat{H}}(\vec{r}) = 0 & \cdots & (2) \\
\vec{\nabla} \times \vec{\hat{E}}(\vec{r}) = -i \omega \mu \vec{\hat{H}}(\vec{r}) & \cdots & (3) \\
\vec{\nabla} \times \vec{\hat{H}}(\vec{r}) = (\sigma + i \omega \varepsilon) \vec{\hat{E}}(\vec{r}) & \cdots & (4)
\end{cases}$$

and further assuming that $\ \vec{\hat{E}}(\vec{r}) \ \& \ \vec{\hat{H}}(\vec{r}) \$ are functions of $\ z \$ only , i.e.,

$$\vec{\hat{E}}(\vec{r}) = \vec{a}_x \ \hat{E}_x(z) + \vec{a}_y \ \hat{E}_y(z) + \vec{a}_z \ \hat{E}_z(z) \qquad \cdots \qquad (5)$$

$$\vec{\hat{H}}(\vec{r}) = \vec{a}_x \ \hat{H}_x(z) + \vec{a}_y \ \hat{H}_y(z) + \vec{a}_z \ \hat{H}_z(z) \qquad \cdots \qquad (6)$$

deduce that $\hat{E}_z(z) = 0 = \hat{H}_z(z)$ and

$$\frac{d^2 \hat{E}_x(z)}{dz^2} = -\hat{\gamma}^2 \hat{E}_x(z) \quad \text{where} \quad \hat{\gamma} = \sqrt{\left(\omega^2 \mu \varepsilon - i \omega \mu \sigma\right)} \quad , \tag{12 marks}$$

- (b) An uniform plane wave travelling along + z direction with the field components of $\left(E_x, H_y\right)$ has a complex electric field amplitude of $80 \, e^{i \, 40^0} \, \frac{V}{m}$ and propagates at $f = 6 \times 10^7 \, Hz$ in a material region having the parameters of $\mu = \mu_0$, $\varepsilon = 4 \, \varepsilon_0$ & $\frac{\sigma}{\omega \, \varepsilon} = 0.6$,
 - (i) Find the values of the propagation constant $\hat{\gamma}$ (= $\alpha + i \beta$) and the intrinsic wave impedance $\hat{\eta}$ for this wave. (5 marks)
 - (ii) express the electric and magnetic fields in both their complex and real-time forms, with the numerical values of (b)(i) inserted, (5 marks)
 - (iii) find the values of the penetration depth, wave length and phase velocity of the given wave. (3 marks)

An uniform plane wave $(\hat{E}_{x1}^+, \hat{H}_{y1}^+)$, operates at $f = 10^8$ Hz, is normally incident upon a lossless layer of $d_2 \left(= \frac{\lambda_2}{4} \right)$ thickness with parameters of $(\mu = \mu_0, \varepsilon = 9 \varepsilon_0)$ as shown below:

Region 1: (Mo,
$$\epsilon_0$$
, $\sigma=0$) Region 2: (Mo, $9\epsilon_0$, $\sigma=0$) Region 3: (Mo, ϵ_0 , $\sigma=0$)
$$\hat{E}_{x,1}^{+} = \hat{E}_{m,1}^{+} e^{-\hat{x}_1^{-\hat{x}_2}} \left\{ \begin{array}{c} \hat{E}_{x,2}^{+} = \hat{E}_{m,2}^{+} e^{-\hat{x}_2^{-\hat{x}_2}} \\ \hat{E}_{x,2}^{+} = \hat{E}_{m,2}^{+} e^{-\hat{x}_2^{-\hat{x}_2}} \\ \hat{H}_{y,1}^{+} = \frac{\hat{E}_{m,1}^{+}}{\hat{I}_{1}^{-\hat{x}_2}} e^{-\hat{x}_2^{-\hat{x}_2}} \right\} \xrightarrow{\hat{E}_{x,2}^{+} = \hat{E}_{x,2}^{+}} e^{-\hat{x}_2^{-\hat{x}_2}} \\
\hat{H}_{y,1}^{+} = \frac{\hat{E}_{m,1}^{+}}{\hat{I}_{1}^{-\hat{x}_2}} e^{\hat{x}_2^{-\hat{x}_2}} \\
\hat{H}_{y,2}^{+} = \frac{\hat{E}_{m,2}^{-\hat{x}_2}}{\hat{I}_{2}^{-\hat{x}_2}} e^{\hat{x}_2^{-\hat{x}_2}} \\
\hat{H}_{y,2}^{+} = \frac{\hat{E}_{m,2}^{-\hat{x}_2}}{\hat{I}_{2}^{-\hat{x}_2}} e^{\hat{x}_2^{-\hat{x}_2}}$$

$$\hat{H}_{y,2}^{+} = \frac{\hat{E}_{m,2}^{-\hat{x}_2}}{\hat{I}_{2}^{-\hat{x}_2}} e^{\hat{x}_2^{-\hat{x}_2}} \\
\hat{H}_{y,2}^{+} = \frac{\hat{E}_{m,2}^{-\hat{x}_2}}{\hat{I}_{2}^{-\hat{x}_2}} e^{\hat{x}_2^{-\hat{x}_2}}$$

$$\hat{H}_{y,2}^{+} = \frac{\hat{E}_{m,2}^{-\hat{x}_2}}{\hat{I}_{2}^{-\hat{x}_2}} e^{\hat{x}_2^{-\hat{x}_2}} \\
\hat{H}_{y,2}^{+} = \frac{\hat{E}_{m,2}^{-\hat{x}_2}}{\hat{I}_{2}^{-\hat{x}_2}} e^{\hat{x}_2^{-\hat{x}_2}}$$

$$\hat{H}_{y,2}^{+} = \frac{\hat{E}_{m,2}^{-\hat{x}_2}}{\hat{I}_{2}^{-\hat{x}_2}} e^{\hat{x}_2^{-\hat{x}_2}} \\
\hat{H}_{y,2}^{+} = \frac{\hat{E}_{m,2}^{-\hat{x}_2}}{\hat{I}_{2}^{-\hat{x}_2}} e^{\hat{x}_2^{-\hat{x}_2}}$$

- 0_1 , 0_2 & 0_3 are the respective origins for region 1, 2 & 3 chosen at the first and second interface. (Both region 1 and region 3 are air region.)
- (a) Define for the i^{th} region (i = 1, 2, 3) the reflection coefficient $\hat{\Gamma}_i(z)$ and the total wave impedance $\hat{Z}_i(z)$ and deduce the following:

$$\begin{cases} \hat{Z}_{i}(z) = \hat{\eta}_{i} \frac{1 + \hat{\Gamma}_{i}(z)}{1 - \hat{\Gamma}_{i}(z)} & \text{and reversely} \quad \hat{\Gamma}_{i}(z) = \frac{\hat{Z}_{i}(z) - \hat{\eta}_{i}}{\hat{Z}_{i}(z) + \hat{\eta}_{i}} & \text{and} \\ \hat{\Gamma}_{i}(z') = \hat{\Gamma}_{i}(z) e^{2\hat{\gamma}_{i}(z'-z)} & \text{where } z' \& z \text{ are two point s in } i^{th} \text{ region} \end{cases}$$
 (10 marks)

- (b) (i) find the values of $\hat{\gamma}_1$, $\hat{\gamma}_2$, $\hat{\gamma}_3$, $\hat{\eta}_2$ & λ_2 , (note: $\hat{\eta}_1 = \hat{\eta}_3 = 120 \pi \Omega$ and $\alpha_1 = \alpha_2 = \alpha_3 = 0$) (3 marks)
 - (ii) starting with $\hat{\Gamma}_3(z) = 0$ for the rightmost region , i.e., region 3 , and using continuous \hat{Z} at the interface as well as the equations in (a) , find the values of $\hat{Z}_3(0)$, $\hat{Z}_2(0)$, $\hat{\Gamma}_2(0)$, $\hat{\Gamma}_2(-d_2)$, $\hat{Z}_2(-d_2)$, $\hat{Z}_1(0)$ & $\hat{\Gamma}_1(0)$

(10 marks)

(iii) find the value of \hat{E}_{m1}^- if given $\hat{E}_{m1}^+ = 50 e^{i 40^\circ} \frac{V}{m}$ (2 marks)

$$e = 1.6 \times 10^{-19} C$$

$$m_e = 9.1 \times 10^{-31} kg$$

$$\mu_0 = 4 \pi \times 10^{-7} \frac{H}{m}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \frac{F}{m}$$

$$\alpha = \frac{\omega \sqrt{\mu \, \varepsilon}}{\sqrt{2}} \sqrt{\sqrt{1 + \left(\frac{\sigma}{\omega \, \varepsilon}\right)^2} - 1}$$

$$\beta = \frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2 + 1}$$

$$\frac{1}{\sqrt{\mu_0 \ \varepsilon_0}} = 3 \times 10^8 \ \frac{m}{s}$$

$$\hat{\eta} = \frac{\sqrt{\frac{\mu}{\varepsilon}}}{\sqrt[4]{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2}} e^{i\frac{1}{2}\tan^{-1}\left(\frac{\sigma}{\omega \varepsilon}\right)}$$

$$\eta_0 = 120 \pi \Omega = 377 \Omega$$

$$\beta_0 = \omega \sqrt{\mu_0 \ \varepsilon_0}$$

$$\oint_{S} \vec{E} \cdot d\vec{s} = \frac{1}{\varepsilon} \iiint_{V} \rho_{v} dv$$

$$\oint \int_{S} \vec{B} \cdot d\vec{s} = 0$$

$$\oint_L \vec{E} \cdot d\vec{l} = -\frac{\partial}{\partial t} \left(\iint_S \vec{B} \cdot d\vec{s} \right)$$

$$\oint_{L} \vec{B} \cdot d\vec{l} = \mu \iint_{S} \vec{J} \cdot d\vec{s} + \mu \varepsilon \frac{\partial}{\partial t} \left(\iint_{S} \vec{E} \cdot d\vec{s} \right)$$

$$\vec{\nabla} \bullet \vec{E} = \frac{\rho_v}{\varepsilon}$$

$$\vec{\nabla} \bullet \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\,\frac{\partial\,\vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \mu \, \vec{J} + \mu \, \varepsilon \, \frac{\partial \vec{E}}{\partial t}$$

$$\vec{J} = \sigma \vec{E}$$

$$\begin{split} & \bigoplus_{S} \vec{F} \bullet d\vec{s} \equiv \iiint_{S} \left(\vec{\nabla} \cdot \bullet \vec{F} \right) dv \qquad divergence theorem \\ & \downarrow_{L} \vec{F} \bullet d\vec{l} \equiv \iint_{S} \left(\vec{\nabla} \times \vec{F} \right) \bullet d\vec{s} \qquad Stokes' theorem \\ & \vec{\nabla} \cdot \bullet \left(\vec{\nabla} \times \vec{F} \right) \equiv 0 \\ & \vec{\nabla} \times \left(\vec{\nabla} \times \vec{F} \right) \equiv \vec{\nabla} \left(\vec{\nabla} \cdot \bullet \vec{F} \right) - \nabla^{2} \vec{F} \\ & \vec{\nabla} \cdot \vec{f} = \vec{e}_{x} \frac{\partial f}{\partial x} + \vec{e}_{y} \frac{\partial f}{\partial y} + \vec{e}_{z} \frac{\partial f}{\partial z} = \vec{e}_{p} \frac{\partial f}{\partial \rho} + \vec{e}_{\phi} \frac{1}{\rho} \frac{\partial f}{\partial \phi} + \vec{e}_{z} \frac{\partial f}{\partial z} \\ & = \vec{e}_{r} \frac{\partial f}{\partial r} + \vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta} + \vec{e}_{\phi} \frac{1}{r \sin(\theta)} \frac{\partial f}{\partial \phi} \\ & \vec{\nabla} \cdot \vec{F} = \frac{\partial (F_{x})}{\partial x} + \frac{\partial (F_{y})}{\partial y} + \frac{\partial (F_{z})}{\partial z} = \frac{1}{\rho} \frac{\partial (F_{\rho}, \rho)}{\partial \rho} + \frac{1}{\rho} \frac{\partial (F_{\phi})}{\partial \phi} + \frac{\partial (F_{z})}{\partial z} \\ & = \frac{1}{r^{2}} \frac{\partial (F_{r}, r^{2})}{\partial r} + \frac{1}{r \sin(\theta)} \frac{\partial (F_{\theta} \sin(\theta))}{\partial \theta} + \frac{1}{r \sin(\theta)} \frac{\partial (F_{\phi})}{\partial \phi} + \frac{\partial (F_{z})}{\partial z} \\ & \vec{\nabla} \times \vec{F} = \vec{e}_{z} \left(\frac{\partial (F_{z})}{\partial y} - \frac{\partial (F_{y})}{\partial z} \right) + \vec{e}_{y} \left(\frac{\partial (F_{x})}{\partial z} - \frac{\partial (F_{z})}{\partial x} \right) + \vec{e}_{z} \left(\frac{\partial (F_{y})}{\partial x} - \frac{\partial (F_{z})}{\partial y} \right) \\ & = \frac{\vec{e}_{p}}{\rho} \left(\frac{\partial (F_{z})}{\partial \phi} - \frac{\partial (F_{z}, \rho)}{\partial z} \right) + \vec{e}_{z} \left(\frac{\partial (F_{\theta})}{\partial z} - \frac{\partial (F_{z})}{\partial z} \right) + \frac{\vec{e}_{\theta}}{\rho} \left(\frac{\partial (F_{\theta}, \rho)}{\partial \rho} - \frac{\partial (F_{\theta}, \rho)}{\partial \rho} \right) \\ & = \frac{\vec{e}_{z}}{r^{2} \sin(\theta)} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \theta} - \frac{\partial (F_{\theta}, r)}{\partial \phi} \right) + \frac{\vec{e}_{\theta}}{r \sin(\theta)} \left(\frac{\partial (F_{\theta})}{\partial \rho} - \frac{\partial (F_{\theta}, \rho)}{\partial \rho} - \frac{\partial (F_{z})}{\partial \rho} \right) \\ & = \frac{\vec{e}_{z}}{r^{2} \sin(\theta)} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \theta} - \frac{\partial (F_{\theta}, r)}{\partial \theta} \right) + \frac{\vec{e}_{\theta}}{r \sin(\theta)} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \phi} \right) + \frac{\vec{e}_{\theta}}{r^{2}} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \rho} \right) + \frac{\vec{e}_{\theta}}{r^{2}} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \rho} \right) + \frac{\vec{e}_{\theta}}{r^{2}} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \rho} \right) + \frac{\vec{e}_{\theta}}{r^{2}} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \rho} \right) + \frac{\vec{e}_{\theta}}{r^{2}} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \rho} \right) \\ & = \frac{\vec{e}_{z}}{r^{2}} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \theta} - \frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \theta} \right) + \frac{\vec{e}_{\theta}}{r^{2}} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \rho} \right) + \frac{\vec{e}_{\theta}}{r^{2}} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \rho} \right) + \frac{\vec{e}_{\theta}}{r^{2}} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \rho} \right) + \frac{\vec{e}_{\theta}}{r^{2}} \left(\frac{\partial (F_{\theta}, r \sin(\theta))}{\partial \rho} \right)$$