FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2010/2011

TITLE OF PAPER

ELECTROMAGNETIC THEORY I

COURSE NUMBER

P331

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE

QUESTIONS.

EACH QUESTION CARRIES 25

MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND

MARGIN.

THIS PAPER HAS <u>NINE</u> PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

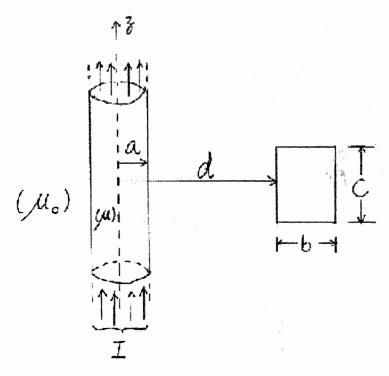
Question one

- (a) (i) From the conservation of electric charges, i.e., $I = -\frac{\partial q}{\partial t} \quad \text{where} \quad I = \oint_S \vec{J} \cdot d\vec{s} \quad \& \quad q = \oint_V \rho_V \, dV \, ,$ deduce the following equation of continuity for electric charges $\vec{\nabla} \cdot \vec{J} = -\frac{\partial \rho_V}{\partial t} \qquad \qquad (4 \text{ marks})$
 - (ii) Show that without introducing the displacement current term, i.e., $\frac{\partial \vec{D}}{\partial t}$, in the equation for Ampere's law, i.e., $\vec{\nabla} \times \vec{H} = \vec{J}$ instead of $\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$, Maxwell's equations would contradict with the continuity equation for electric charges. And also show that with the introduction of the displacement current term $\frac{\partial \vec{D}}{\partial t}$ in the equation for Ampere's law, i.e., $\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$, Maxwell's equations agree with the law of conservation of charges. (7 marks)
- (b) A spherical ball of radius R_0 with a dielectric constant ε , centered at the origin, carries a volume charge distribution of $\rho_v = 15 \left(1 + \alpha r^2\right) \frac{Coulomb}{m^3}$ where α is a constant and embedded in air of permittivity ε_0 .
 - (i) Use the integral form of Gauss's law and choose proper Gaussian surfaces to find \vec{E} in terms of r, R_0 & α for $0 \le r \le R_0$ & $r \ge R_0$ regions.

(12 marks)

(ii) Determine the value of α such that the electric field everywhere outside the spherical ball is zero. (2 marks)

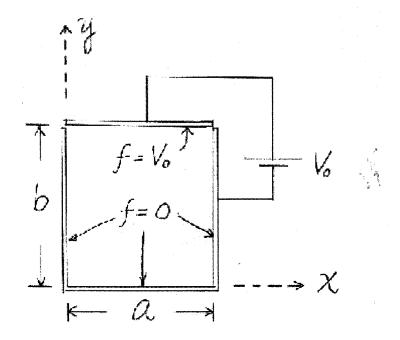
(a) A very long straight wire of cross-sectional radius a and a permeability μ , has its central axis coinciding with the z-axis. It carries an uniform current density in the positive z direction with the total static current of I, i.e., the current density inside the wire is $\frac{I}{\pi a^2}$, as shown in the diagram below:



Use the integral form of Ampere's law and choose proper closed loops to find the magnetic induction \vec{B} in terms of ρ , a & I for $0 \le \rho \le a$ & $\rho \ge a$ regions, ρ , φ , z are cylindrical coordinates. (15 marks)

- (b) Placing a rectangular conducting loop of dimension $b \times c$ a distance of d > a away from the central axis of the wire as shown in the diagram in (a), i.e., the inner region confined by the rectangular loop in clockwise sense is
 - $S: d \le \rho \le d + b$, $0 \le z \le c$ & $d\vec{s} = \vec{a}_b d\rho dz$.
 - (i) Find the total magnetic flux passing through the inner region confined by the rectangular loop i.e., $\int_{C} \vec{B} \cdot d\vec{s}$, in terms of a, b, c, d & I. (7 marks)
 - (ii) If the wire carries a sinusoidal current of $I_0 \sin(\omega t)$ instead of carrying a static current I, find the induced e.m.f. in the rectangular conducting loop in terms of $a, b, c, d, \omega \& I_0$ under quasi static situation. (3 marks)

An infinitely long, rectangular U shaped conducting channel is insulated at the corners from the conducting plate forming the fourth side with interior dimensions as shown below:



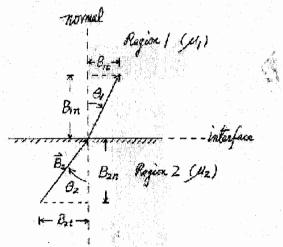
The electric potential in between the two conductors f(x,y) satisfies 2 – D Laplace equation,

i.e.,
$$\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2} = 0$$

- (a) Using separation of variable scheme and setting f(x, y) = X(x) Y(y), break the 2 D Laplace equation into two ordinary differential equations. (5 marks)
- (b) By direct substitution, show that $f_n(x,y) = E_n \sin\left(\frac{n\pi x}{a}\right) \sinh\left(\frac{n\pi y}{a}\right)$, where E_n with $n = 1, 2, 3, \cdots$ are constants, not only satisfies 2 D Laplace equation but also satisfies the following three zero boundary conditions, i.e., $f_n = 0$ at x = 0, $f_n = 0$ at x = 0 at x = 0 at x = 0 at x = 0.
- (c) Apply the final non-zero boundary condition, i.e., $f(x,b) = V_0$, to the following f(x,y) where $f(x,y) = \sum_{n=1}^{\infty} f_n(x,y) = \sum_{n=1}^{\infty} E_n \sin\left(\frac{n\pi x}{a}\right) \sinh\left(\frac{n\pi y}{a}\right)$ to find E_n in terms of V_0 , a, b & n. (12 marks)

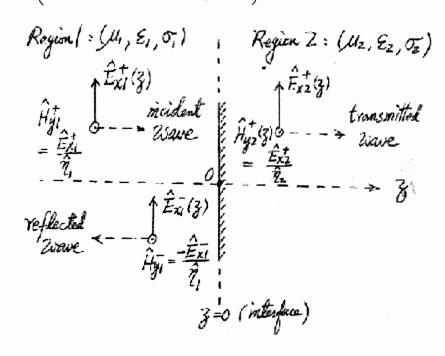
(Hint:
$$\int_0^a \sin\left(\frac{n \pi x}{a}\right) \sin\left(\frac{m \pi x}{a}\right) dx = \begin{cases} 0 & \text{if } n \neq m \\ \frac{a}{2} & \text{if } n = m \end{cases}$$
)

(a) An interface separating two isotropic materials of permeabilities μ_1 & μ_2 as shown in the diagram below. \vec{B}_1 & \vec{B}_2 are the magnetic fields at points on either side of the interface infinitely close to each other and θ_1 & θ_2 are the respective angles made with the normal.



- (i) Use integral magnetic Gauss law and by choosing proper Gaussian surface (pillbox in shape across the interface) deduce that the normal component of \vec{B} is continuous at the interface, i.e., $B_{1n} = B_{2n}$. (6 marks)
- (ii) Given that the tangential component of \vec{H} is continuous at the interface, i.e., $H_{1t} = H_{2t}$, deduce the following refraction relation for \vec{B} $\tan(\theta_2) = \frac{\mu_2}{\mu_1} \tan(\theta_1)$ (6 marks)
- (b) In a conductive region, based on Drude's model the force on a conduction electron is $-e \, \vec{E}$ and the retardation force due to the ion lattice of the conductor is $-\frac{2 \, m_e \, \vec{v}_d}{\tau_c}$ where \vec{v}_d & τ_c are the drifting velocity and mean free time of an average conduction electron. Thus the equation of motion for a conduction electron is $m_e \, \frac{d \, \vec{v}_d}{d \, t} = -e \, \vec{E} \frac{2 \, m_e \, \vec{v}_d}{\tau_c} \ ,$
 - (i) In the steady state situation, i.e., $\frac{d\vec{v}_d}{dt} = 0$, deduce the following point form of Ohm's law $\vec{J} = \sigma \vec{E}$ where $\sigma = \frac{ne^2}{2m_e} \tau_c$, (Hint: $\vec{J} = \rho_v \vec{v}_d = -ne\vec{v}_d$) (7 marks)
 - (ii) If a certain pure metal having an atomic density of $2.5 \times 10^{28} \frac{atoms}{m^3}$ at room temperature and two outer orbit electrons are conduction electrons, find the value of τ_c if its measured dc conductivity is $\sigma = 1.4 \times 10^7 \frac{1}{m\Omega}$. (6 marks)

- (a) An uniform plane wave traveling along the +z direction with the field components $E_x(z) \& H_y(z)$ has a complex electric field amplitude $\hat{E}_m = 100 \, e^{i \, 30^0} \, \frac{V}{m}$ and propagates at a frequency $f = 5 \times 10^7 \, Hz$ in a material region having the parameters $\mu = \mu_0$, $\varepsilon = 9 \, \varepsilon_0 \, \& \, \frac{\sigma}{\omega \, \varepsilon} = 0.5$.
 - (i) Find the values of the propagation constant $\hat{\gamma}$ (= $\alpha + i \beta$) and the intrinsic wave impedance $\hat{\eta}$ for this wave, (4 marks)
 - (ii) Express the electric and magnetic fields in both their complex and real-time forms, with the numerical values of (a)(i) inserted, (6 marks)
 - (iii) Find the values of the penetration depth, wave length and phase velocity of the given wave. (3 marks)
- (b) An uniform plane wave is normally incident upon an interface separating two regions as shown below. The incident wave is given as $\left(\hat{E}_{x1}^{+} = \hat{E}_{m1}^{+} e^{-\hat{\gamma}_{1}z}, \hat{H}_{y1}^{+} = \frac{\hat{E}_{m1}^{+}}{\hat{\eta}_{1}} e^{-\hat{\gamma}_{1}z}\right)$ and thus the reflected and transmitted wave can be written as $\left(\hat{E}_{x1}^{-} = \hat{E}_{m1}^{-} e^{+\hat{\gamma}_{1}z}, \hat{H}_{y1}^{-} = -\frac{\hat{E}_{m1}^{-}}{\hat{\eta}_{1}} e^{+\hat{\gamma}_{1}z}\right)$ and $\left(\hat{E}_{x2}^{+} = \hat{E}_{m2}^{+} e^{-\hat{\gamma}_{2}z}, \hat{H}_{y2}^{+} = \frac{\hat{E}_{m2}^{+}}{\hat{\eta}_{2}} e^{-\hat{\gamma}_{2}z}\right)$ respectively.



Question five (continued)

137

From the boundary conditions at the interface , i.e., both total \hat{E}_x & \hat{H}_y are continuous at z=0, deduce the following

$$\begin{cases} \hat{E}_{m1}^{-} = \hat{E}_{m1}^{+} \frac{\hat{\eta}_{2} - \hat{\eta}_{1}}{\hat{\eta}_{2} + \hat{\eta}_{1}} \\ \hat{E}_{m2}^{+} = \hat{E}_{m1}^{+} \frac{2 \hat{\eta}_{2}}{\hat{\eta}_{2} + \hat{\eta}_{1}} \end{cases}$$
(12 marks)

$$e = 1.6 \times 10^{-19} C$$

$$m_e = 9.1 \times 10^{-31} kg$$

$$\mu_0 = 4 \pi \times 10^{-7} \frac{H}{m}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \frac{F}{m}$$

$$\hat{\gamma} = \alpha + i \beta \qquad \text{where}$$

$$\alpha = \frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2 - 1}$$

$$\beta = \frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2 + 1}$$

$$\frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \frac{m}{s}$$

$$\hat{\eta} = \frac{\sqrt{\frac{\mu}{\varepsilon}}}{\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2}} e^{i\frac{1}{2} \tan^{-1} \left(\frac{\sigma}{\omega \varepsilon}\right)}$$

$$\eta_0 = 120 \pi \Omega = 377 \Omega$$

$$\beta_0 = \omega \sqrt{\mu_0 \ \varepsilon_0}$$

$$\oint \int_{S} \vec{E} \cdot d\vec{s} = \frac{1}{\varepsilon} \iiint_{V} \rho_{v} dv$$

$$\oiint_{S} \vec{B} \bullet d\vec{s} \equiv 0$$

$$\oint_L \vec{E} \cdot d\vec{l} = -\frac{\partial}{\partial t} \left(\iint_S \vec{B} \cdot d\vec{s} \right)$$

$$\oint_L \vec{B} \bullet d\vec{l} = \mu \iint_S \vec{J} \bullet d\vec{s} + \mu \varepsilon \frac{\partial}{\partial t} \left(\iint_S \vec{E} \bullet d\vec{s} \right)$$

$$\begin{split} \vec{\nabla} & \bullet \vec{E} = \frac{\rho_v}{\varepsilon} \\ \vec{\nabla} & \bullet \vec{B} = 0 \\ \vec{\nabla} & \bullet \vec{B} = 0 \\ \vec{\nabla} & \bullet \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} & \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} & \times \vec{B} = \mu \vec{J} + \mu \varepsilon \frac{\partial \vec{E}}{\partial t} \\ \vec{J} = \sigma \vec{E} \\ \oint_{S} \vec{F} & \bullet d\vec{S} \equiv \oiint_{S} (\vec{\nabla} \times \vec{F}) \bullet d\vec{S} \\ \int_{S} (\vec{\nabla} \times \vec{F}) = 0 \\ \vec{\nabla} & \times (\vec{\nabla} \times \vec{F}) = 0 \\ \vec{\nabla} & \times (\vec{\nabla} \times \vec{F}) = \vec{D} (\vec{\nabla} \times \vec{F}) = \vec{D} (\vec{\nabla} \times \vec{F}) - \nabla^{2} \vec{F} \\ \vec{\nabla} & f = \vec{e}_{s} \frac{\partial f}{\partial x} + \vec{e}_{s} \frac{\partial f}{\partial y} + \vec{e}_{s} \frac{\partial f}{\partial z} = \vec{e}_{p} \frac{\partial f}{\partial \rho} + \vec{e}_{s} \frac{1}{\rho} \frac{\partial f}{\partial \phi} + \vec{e}_{s} \frac{\partial f}{\partial z} \\ & = \vec{e}_{r} \frac{\partial f}{\partial r} + \vec{e}_{s} \frac{1}{r} \frac{\partial f}{\partial \theta} + \vec{e}_{s} \frac{1}{r \sin(\theta)} \frac{\partial f}{\partial \phi} \\ \vec{\nabla} & \cdot \vec{F} = \frac{\partial (F_{s})}{\partial x} + \frac{\partial (F_{s})}{\partial y} + \frac{\partial (F_{s})}{\partial z} = \frac{1}{\rho} \frac{\partial (F_{s})}{\partial \rho} + \frac{1}{\rho} \frac{\partial (F_{s})}{\partial \phi} + \frac{\partial (F_{s})}{\partial z} \\ & = \frac{1}{r^{2}} \frac{\partial (F_{s} r^{2})}{\partial r} + \frac{1}{r \sin(\theta)} \frac{\partial (F_{s} \sin(\theta))}{\partial \theta} + \frac{1}{r \sin(\theta)} \frac{\partial (F_{s})}{\partial \phi} \\ \vec{\nabla} & \times \vec{F} = \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial y} - \frac{\partial (F_{s})}{\partial z} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial x} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial x} - \frac{\partial (F_{s})}{\partial x} \right) \\ & = \frac{\vec{e}_{p}}{\rho} \left(\frac{\partial (F_{s})}{\partial \phi} - \frac{\partial (F_{s})}{\partial z} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) \\ & = \frac{\vec{e}_{s}}{\rho} \left(\frac{\partial (F_{s})}{\partial \phi} - \frac{\partial (F_{s})}{\partial z} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) \\ & = \frac{\vec{e}_{s}}{\rho} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) \\ & = \frac{\vec{e}_{s}}{\rho} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) \\ & = \frac{\vec{e}_{s}}{\rho} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) + \vec{e}_{s} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} \right) \\ & = \frac{\vec{e}_{s}}{\rho} \left(\frac{\partial (F_{s})}{\partial z} - \frac{\partial (F_{s})}{\partial z} - \frac{$$