FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION

2010/2011

TITLE OF PAPER

ELECTRONICS I

COURSE NUMBER

P311

:

:

:

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE QUESTIONS

EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE SHOWN

IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION 1 99

(a) Consider the simplified voltage regulator circuit shown in Fig. 1.1. Explain, briefly, how the circuit works and state the conditions to be satisfied in order for the circuit to give a constant d.c. voltage as well as ensure that the Zener diode is not damaged.

(10 marks)

- (b) The input voltage of the regulator has a minimum value of 24 V and the peak-to-peak ripple voltage is 2 V. The Zener voltage is 6.2 V and the maximum power allowed in the diode is 0.9 W.
 - (i) Calculate the load current.

(2 marks)

- (ii) Calculate the current through the series resistor when the input voltage is maximum. (3 marks)
- (iii) Calculate the maximum current that should be allowed through the diode. (2 marks)
- (c) Fig. 1.2 is an illustration of a bridge rectifier. Derive an expression for the average current through the load resistor, with the aid of a labelled diagram. (8 marks)

Figure 1.1

Figure 1.2

QUESTION 2

(a) Consider a pnp (bipolar junction) transistor that is connected in the forward-active mode.

Use a suitable diagram to explain how it works. (10 marks)

(b) Fig. 2.1 shows a simple bipolar junction transistor amplifier circuit. The specifications of the circuit are as follows:

Collector current, $I_C = 1.5$ mA Collector-emitter voltage, $V_{CE} = 4.5$ V Transistor dc current gain, $h_{FE} = 200$ Supply voltage, $V_{CC} = 9$ V Base-emitter voltage, $V_{BE} = 0.6$ V

Calculate the following:

(i) The base-bias resistance, R_B . (4 marks)

(ii) The load resistance, R_L . (2 marks)

(c) The element values of the circuit shown in Fig. 2.2 are: R_1 = 150 k Ω , R_2 = 37.5 k Ω , R_L = 7 k Ω , R_3 = 3 k Ω and V_{CC} = 9 V. The d.c. current gain of the transistor is β = 100. Let V_{BE} = 0.6 V.

(i) Calculate the base voltage, V_B. (4 marks)

(ii) Calculate the collector current, $I_{\rm C}$. (3 marks)

(iii) Calculate the collector-emitter voltage, V_{CE} . (2 marks)

Assume that $I_C \approx I_E$ and that the current through resistor R_2 is approximately the same as the current through R_1 , since I_B is very small.

Figure 2.1

Figure 2.2

- (a) Discuss the principle of operation of a p-channel JFET, with reference to a schematic diagram of the JFET and its characteristics. (10 marks)
- (b) (i) Draw the circuit diagram of a common-source amplifier stage in which the dc bias is obtained by means of a source resistor, R_S. The amplifier utilises an n-channel JFET. Label the amplifier circuit. (3 marks)
 - (ii) In what way is the dc bias influenced by R_s?

(3 marks)

(c) An n-channel JFET has the data

Table 1. Data for an n-channel JFET

V _{DS} (V)	I _D (mA)				
	$V_{GS} = 0 V$	$V_{GS} = -2 V$			
0	0	0			
1	2	1			
3	5.8	2.2			
5	8.0	2.6			
9	9.9	2.9			
13	10.2	3.1			
17	10.3	3.3			

(i) Plot the drain characteristics.

(3 marks)

(ii) Use the characteristics to determine the transconductance, g_m of the device at $V_{DS} = 12 \text{ V}$ and to calculate the drain resistance, r_d , for $V_{GS} = -2 \text{ V}$.

(6 marks)

QUESTION 4

(a) Consider the diode equation given below

$$I_D = I_S \left\{ \exp \left(\frac{qV_D}{\eta k_B T} \right) - 1 \right\}$$
, where the symbols have the usual meaning.

For a forward-biased diode $\exp(qV_D/\eta k_BT) >> 1$.

Present the values of the diode current and voltage given in Table 2 in the form of a graph that would enable you to calculate the values of the constant η and the reverse saturation current, I_s .

Table 2. Current and voltage data for a forward-biased p-n diode

Forward voltage, V _D (V)	0.10	0.15	0.20	0.25	0.30
Forward current, I _D (mA)	0.005	0.02	0.10	0.40	1.5

(13 marks)

- (b) The characteristics of the diode in the circuit shown in Fig. 4.1 are shown in Fig. 4.2.
 - (i) With the aid of a d.c. loadline, find the current flowing in the circuit. The applied d.c. voltage, V_s is 0.8 V. (7 marks)
 - (ii) Estimate the voltage across R_L . (2 marks)
 - (iii) Find the value of R_L that will allow 5 μ A to flow in the circuit. (3 marks)

Figure 4.1

Figure 4.2

QUESTION 5

(a) (i) Draw the circuit diagram of a full-wave rectifier which utilises a centre-tap transformer. (3 marks)

- (ii) Explain how the rectifier works, with the aid of the input and output waveforms. (7 marks)
- (b) Fig. 5.1 shows a half-wave rectifier with a reservoir capacitor of capacitance 10 μ F. The peak value of the transformer secondary voltage is 30V (60 Hz) and the average current through the load is 10 mA.
 - (i) With reference to the transformer secondary voltage, show how the output voltage of the circuit varies with time. Label the waveforms. (3 marks)
 - (ii) Calculate the peak value of the ripple voltage.

(4 marks)

(iii) Calculate the d.c. output voltage.

(2 marks)

(c) In the USA, the a.c. power-line supplies 115 Vrms. This voltage is connected to the primary of a transformer with a turns ratio of 1/40.

Calculate the peak-to-peak value of the transformer secondary voltage. (6 marks)

Figure 5.1