FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2010/2011

:

TITLE OF PAPER

MATHEMATICAL METHODS FOR

PHYSICISTS

COURSE NUMBER

P272

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE

QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS SEVEN PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question one

- (a) (i) Given P(-4,-2,-7) in Cartesian coordinate system, find its cylindrical and spherical coordinates. (5 marks)
 - (ii) Given P(10, 150°, 280°) in spherical coordinate system, find its cylindrical and Cartesian coordinates. (5 marks)
- (b) Express \vec{e}_r , \vec{e}_θ , \vec{e}_ρ & \vec{e}_ϕ in terms of \vec{e}_x , \vec{e}_y & \vec{e}_z and deduce that

$$\begin{cases} \frac{d\vec{e}_r}{dt} = \vec{e}_\theta \frac{d\theta}{dt} + \vec{e}_\phi \sin(\theta) \frac{d\phi}{dt} \\ \frac{d\vec{e}_\theta}{dt} = -\vec{e}_r \frac{d\theta}{dt} + \vec{e}_\phi \cos(\theta) \frac{d\phi}{dt} \\ \frac{d\vec{e}_\phi}{dt} = -\vec{e}_r \sin(\theta) \frac{d\phi}{dt} - \vec{e}_\theta \cos(\theta) \frac{d\phi}{dt} \end{cases}$$

(15 marks)

- (a) Given a scalar function f in cylindrical system as $f = 5 \rho^3 2 \rho z^2 \cos(\phi)$,
 - (i) find $\vec{\nabla} f$ at the point $P(2,200^0,-5)$. (5 marks)
 - (ii) show that $\vec{\nabla} \times (\vec{\nabla} f) = 0$. (5 marks)
- (b) Given a vector field $\vec{F} = \vec{e}_r \ 8 \ r^2 + \vec{e}_\theta \ r^2 \cos(\phi) + \vec{e}_\phi \ r^2 \sin(\theta)$ in spherical system,
 - (i) evaluate the value of the closed loop line integral $\oint_{\mathbb{R}} \vec{F} \cdot d\vec{l}$ if L is a circular closed loop of radius 10 in counter clockwise sense on $\theta = 90^{\circ}$ plane (i.e., x y plane) and centred at the origin, i.e.,

r=10 , $\theta=90^{\circ}$, $0\leq\phi\leq2\,\pi$ & $d\vec{l}=\vec{e}_{\phi}\,r\sin(\theta)\,d\,\phi$ $\xrightarrow{r=10$, $\theta=90^{\circ}}$ $\vec{e}_{\phi}\,10\,d\,\phi$

(ii) find $\nabla \times \vec{F}$, then find the value of the surface integral $\iint_S (\nabla \times \vec{F}) \cdot d\vec{s}$ where S is the semi-spherical surface of radius 10 enclosed by the given closed loop in (b)(i), i.e.,

r=10, $0 \le \theta \le 90^{\circ}$, $0 \le \phi \le 2\pi$ & $d\vec{s} = \vec{e}_r$, $r^2 \sin(\theta) d\theta d\phi \xrightarrow{r=10} \vec{e}_r$, $100 \sin(\theta) d\theta d\phi$ Compare the result here with that obtained in (a) and make brief comment on Stokes' theorem. (9 marks) Given the following differential equation as:

$$\frac{d^2 y(x)}{dx^2} - \frac{d y(x)}{dx} - 2 y(x) = 0$$

utilize the power series method, i.e., setting $y(x) = \sum_{n=0}^{\infty} a_n x^{n+s}$ and $a_0 \neq 0$,

- (a) write down the indicial equations. Find the values of s and a_1 (setting $a_0 = 1$). (10 marks)
- (b) write down the recurrence relation. For all the appropriate values of s and a_1 found in (a), set $a_0 = 1$ and use the recurrence relation to calculate the values of a_n up to the value of a_5 . Thus write down two independent solutions in their power series forms.

 (15 marks)

Question four

95

An elastic string of length 10 is fixed at its two ends, i.e., at x = 0 & x = 10 and its transverse deflection u(x,t) satisfies the following one-dimensional wave equation

$$\frac{\partial^2 u(x,t)}{\partial t^2} = 9 \frac{\partial^2 u(x,t)}{\partial x^2}$$

(a) set u(x,t) = F(x) G(t) and use separation scheme to deduce the following ordinary differential equations:

$$\begin{cases} \frac{d^2 F(x)}{dx^2} = -k^2 F(x) \\ \frac{d^2 G(t)}{dy^2} = -9k^2 G(t) \end{cases}$$
 where k is a separation constant (4 marks)

(b) by direct substitution, show that $u(x,t) = \sum_{n=1}^{\infty} E_n \sin\left(\frac{n\pi x}{10}\right) \cos\left(\frac{3 n\pi t}{10}\right)$ where E_n $n = 1, 2, 3, \dots$ are arbitrary constants, satisfies two fixed end conditions, i.e., u(0,t) = 0 = u(10,t), as well as zero initial speed condition, i.e., $\frac{\partial u(x,t)}{\partial t}\Big|_{t=0} = 0$.

(6 marks)

(c) then find E_n in terms of n if the initial position of the string, i.e., u(x,0), is given as $u(x,0) =\begin{cases} 3x & \text{if } 0 \le x \le 4 \\ -2x + 20 & \text{if } 4 \le x \le 10 \end{cases}$

as
$$u(x,0) = \begin{cases} 3x & \text{if } 0 \le x \le 4 \\ -2x + 20 & \text{if } 4 \le x \le 10 \end{cases}$$

(hint : $\int_{x=0}^{10} \sin\left(\frac{n\pi x}{10}\right) \sin\left(\frac{m\pi x}{10}\right) dx = \begin{cases} 0 & \text{if } n \ne m \\ 5 & \text{if } n = m \end{cases}$

$$\int x \sin\left(\frac{n\pi x}{10}\right) dx = \frac{100}{n^2 \pi^2} \sin\left(\frac{n\pi x}{10}\right) - \frac{10}{n\pi} x \cos\left(\frac{n\pi x}{10}\right)$$

Thus calculate the values of E_1 , E_2 and E_3 .

(15 marks)

Question five

96

Given the following equations for coupled oscillator system as:

$$\begin{cases} \frac{d^2 x_1(t)}{dt^2} = -14 x_1(t) + 4 x_2(t) \\ \frac{d^2 x_2(t)}{dt^2} = 5 x_1(t) - 6 x_2(t) \end{cases}$$

- (a) set $x_1(t) = X_1 e^{i\omega t}$ & $x_2(t) = X_2 e^{i\omega t}$, deduce the following matrix equation
 - $A X = -\omega^2 X$ where $A = \begin{pmatrix} -14 & 4 \\ 5 & -6 \end{pmatrix}$ & $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ (4 marks)
- (b) find the eigenfrequencies ω of the given coupled system, (5 marks)
- (c) find the eigenvectors X of the given coupled system corresponding to each eigenfrequencies found in (b). (6 marks)
- (d) find the normal coordinates for the given coupled system, (7 marks)
- (e) write down the general solution of the given system. (3 marks)

Useful informations

97

The transformations between rectangular and spherical coordinate systems are :

$$\begin{cases} x = r \sin(\theta) \cos(\phi) \\ y = r \sin(\theta) \sin(\phi) \\ z = r \cos(\theta) \end{cases} & & & \begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right) \\ \phi = \tan^{-1} \left(\frac{y}{x} \right) \end{cases}$$

The transformations between rectangular and cylindrical coordinate systems are:

$$\begin{cases} x = \rho \cos(\phi) \\ y = \rho \sin(\phi) \\ z = z \end{cases} & \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \phi = \tan^{-1} \left(\frac{y}{x}\right) \\ z = z \end{cases}$$

$$\vec{\nabla} f = \vec{e}_1 \frac{1}{h_1} \frac{\partial f}{\partial u_1} + \vec{e}_2 \frac{1}{h_2} \frac{\partial f}{\partial u_2} + \vec{e}_3 \frac{1}{h_3} \frac{\partial f}{\partial u_3}$$

$$\vec{\nabla} \bullet \vec{F} = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial (F_1 h_2 h_3)}{\partial u_1} + \frac{\partial (F_2 h_1 h_3)}{\partial u_2} + \frac{\partial (F_3 h_1 h_2)}{\partial u_3} \right)$$

$$\vec{\nabla} \times \vec{F} = \frac{\vec{e}_1}{h_2 h_3} \left(\frac{\partial (F_3 h_3)}{\partial u_2} - \frac{\partial (F_2 h_2)}{\partial u_3} \right) + \frac{\vec{e}_2}{h_1 h_3} \left(\frac{\partial (F_1 h_1)}{\partial u_3} - \frac{\partial (F_3 h_3)}{\partial u_1} \right)$$

$$+ \frac{\vec{e}_3}{h_1 h_2} \left(\frac{\partial (F_2 h_2)}{\partial u_1} - \frac{\partial (F_1 h_1)}{\partial u_2} \right)$$

where $\vec{F} = \vec{e}_1 F_1 + \vec{e}_2 F_2 + \vec{e}_3 F_3$ and

$$(u_1, u_2, u_3)$$
 represents (x, y, z) for rectangular coordinate system represents (ρ, ϕ, z) for cylindrical coordinate system represents (r, θ, ϕ) for spherical coordinate system

$$(\vec{e}_1 \ , \vec{e}_2 \ , \vec{e}_3)$$
 represents $(\vec{e}_x \ , \vec{e}_y \ , \vec{e}_z)$ for rectangular coordinate system represents $(\vec{e}_\rho \ , \vec{e}_\phi \ , \vec{e}_z)$ for cylindrical coordinate system represents $(\vec{e}_r \ , \vec{e}_\theta \ , \vec{e}_\phi)$ for spherical coordinate system

$$(h_1, h_2, h_3)$$
 represents $(1, 1, 1)$ for rectangular coordinate system represents $(1, \rho, 1)$ for cylindrical coordinate system represents $(1, r, r \sin(\theta))$ for spherical coordinate system