UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS.

SUPPLEMENTARY EXAMINATION 2010

TITLE OF PAPER: STATISTICAL PHYSICS & THERMODYNAMICS

COURSE NUMBER: P461

TIME ALLOWED: THREE HOURS

ANSWER ANY FOUR QUESTIONS . ALL QUESTIONS CARRY EQUAL MARKS

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

THIS PAPER CONTAINS FIVE QUESTIONS

QUESTION ONE

- (a) Explain what each of the following terms represent for a system of particles.
 - (i) Macrostate
 - (ii) Microstate
 - (iii) Weight (6 marks)
- (b) (i) What are the possible macrostates of the system having two energy levels and three distinguishable particles.
 - (ii) Use appropriate equations to find the microstates corresponding to the above macrostates if:
 - (A) the energy levels are non-degenerate
 - (B) the energy levels have a degeneracy of two. (12 marks)
- (c) Derive an expression for the mean velocity of a molecule in a perfect classical gas.

 [Given: the differential form of M-B distribution function is

$$n(vdv) = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} v^2 dv$$
 (7 marks)

QUESTION TWO

(a) Derive the Fermi-Dirac distribution function for a system of fermions,

$$n_S = \frac{g_S}{e^{-(\alpha + \beta \varepsilon_S)} + 1}$$
, where symbols have their usual meanings

(12 marks)

(b) (i) Given that the density of states for fermions is:

$$g(\varepsilon)d\varepsilon = \frac{4\pi V}{h^3} (2m)^{3/2} \varepsilon^{1/2} d\varepsilon$$

where symbols have their usual meanings, show that the Fermi energy of a system of fermions:

$$\varepsilon_F = \frac{h^2}{2m} \left(\frac{3N}{8\pi V}\right)^{2/3}$$

(8 marks)

(ii) Calculate the Fermi energy of a metal having density 8.5x10² kg m⁻³ and atomic weight 40. (5 marks)

QUESTION THREE

(a) The Maxwell- Boltzmann distribution function for a system of classical particles is given by:

$$n_s = g_s e^{\alpha + \beta \varepsilon_s},$$

where the symbols have their usual meanings. Such a system has 2000 particles distributed in three non-degenerate energy levels having energies 1 unit and 2 units and 3 units each. The total energy is 2600 units. Use the above distribution function to obtain the values of α and β of this system and hence find its probable configuration. Verify your answer numerically.

(15 marks)

(b) Use the differential form of Maxwell-Boltzmann distribution function in terms of the velocity v of the particles:

$$n(v)dv = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} v^2 dv$$

to obtain expressions for:

- (a) the mean velocity
- (b) the most probable velocity of the molecules of a classical gas.

[Note: see appendix for definite integrals]

(10 marks)

QUESTION FOUR

(a) Use the Bose-Einstein distribution function of an assembly of identical non-interacting particles in thermal equilibrium to derive the Planck's radiation law for spectral distribution of energy radiated from a constant temperature enclosure.

(9 marks)

- (b) Obtain an expression for the total energy per unit volume emitted from the enclosure at temperature T. (5 marks)
- (c) (i) State briefly what is **Bose_Einstein condensation.** (3 marks)
 - (ii) The density of ideal gas consisting of particles having mass 6.65×10^{-27} kg is 1.17×10^{26} m⁻³.
 - 1. Calculate the Bose temperature T_B of the gas. (5 marks)
 - 2. What fraction of the particles will be in the ground state at a temperature of $0.1T_B$. (3 marks)

Given:
$$N = 2.612V \left(\frac{2\pi m k T_B}{h^2} \right)^{3/2}$$

QUESTION FIVE

(a) Derive the partition function of a classical gas:

$$Z = \frac{v}{h^3} (2\pi mkT)^{3/2}$$

(8 marks)

(b) Show that the pressure of the classical gas:

$$P = NkT \frac{\partial \ln Z}{\partial V}$$

Hence derive the ideal gas equation P V = N k T

(10 marks)

(c) Calculate the translational partition function of an hydrogen molecule confined to a volume of $100~\rm cm^3$ at $300~\rm K$.

(7 marks)

Appendix 1

Various definite integrals

$$\int_{0}^{\infty} e^{-ax^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x dx = \frac{1}{2a}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{3} dx = \frac{1}{2a^{2}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{2} dx = \frac{1}{4} \sqrt{\frac{\pi}{a^{3}}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{4} dx = \frac{3}{8a^{2}} (\frac{\pi}{a})^{1/2}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{5} dx = \frac{1}{a^{3}}$$

$$\int_{0}^{\infty} \frac{x^{3} dx}{e^{x} - 1} = \frac{\pi^{4}}{15}$$

$$\int_{0}^{\infty} x^{1/2} e^{-\lambda x} dx = \frac{\pi^{1/2}}{2\lambda^{3/2}}$$

$$\int_{0}^{\infty} \frac{x^{4}e^{x}}{(e^{x} - 1)^{2}} dx = \frac{4\pi^{4}}{15}$$

$$\int_{0}^{\infty} \frac{x^{1/2}}{e^{x} - 1} dx = \frac{2.61\pi^{1/2}}{2}$$

Appendix 2

Physical Constants

Quantity	symbol	value
Speed of light	•	3.00 x 10 ⁸ ms ⁻¹
Plank's constant	c h	6.63 x 10 ⁻³⁴ J.s
Boltzmann constant	k	$1.38 \times 10^{-23} \text{ JK}^{-1}$
Electronic charge	e	1.61 x 10 ⁻¹⁹ C
Mass of electron	m _e	9.11 x 10 ⁻³¹ kg
Mass of proton	m _p	$1.67 \times 10^{-27 \text{kg}}$
Gas constant	R	8.31 J mol ⁻¹ K ⁻¹
Avogadro's number	N_A	6.02×10^{23}
Bohr magneton	$\mu_{\mathtt{B}}$	$9.27 \times 10^{-24} \text{JT}^{-1}$
Permeability of free space	μ_{o}	$4\pi \times 10^{-7} \text{Hm}^{-1}$
Stefan constant	σ	$5.67 \times 10^{-8} \text{Wm}^{-2} \text{K}^{-4}$
Atmospheric pressure		$1.01 \times 10^5 \text{Nm}^{-2}$
Mass of 24 He atom		$6.65 \times 10^{-27} \text{ kg}$
Mass of ³ ₂ He atom		$5.11 \times 10^{-27} \text{ kg}$
Volume of an ideal gas at STP		22.4 l mol ⁻¹