UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2009_10

TITLE OF THE PAPER: NUCLEAR PHYSICS

COURSE NUMBER : P442

TIME ALLOWED : THREE HOURS

INSTRUCTIONS:

ANSWER ANY <u>FOUR</u> OUT OF FIVE QUESTIONS.

- EACH QUESTION CARRIES <u>25</u> MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- USE THE INFORMATION GIVEN IN THE ATTACHED APPENDIX WHEN NECESSARY.

THIS PAPER HAS **SIX** PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

Q.1:

(A)State whether each of the following statements is true or false. Give reasons, where applicable.

[5]

- (i) Electron do not feel the nuclear force at all..
- (ii) At short distances the nuclear force is stronger than Coulomb force.
- (iii)The fact that there are no bound states of the di-neutron and di-proton means that the nuclear force between a neutron and a proton is much stronger than that between two neutrons or between two protons.
- (iv) Shape of the nucleus is always spherical.
- (v) Even-Odd or Odd-Even nuclei in their ground states always have the angular momentum zero.
- (B) Define the following:

[10]

- (i) mass defect and nuclear binding energy.
- (ii) radius of the nuclei.
- (iii) half life, mean life and decay constant.
- (iv) the Q value for β^- and β^+ decay.
- (v) nuclear fission and fusion.
- (C) (i) Explain the principle behind nuclear dating technique.

[5]

[5]

(ii) The abundances of ^{238}U and ^{234}U in the present day natural uranium [5] are 99.28% and 0.0058% respectively. The half life of ^{238}U is 4.498 x 10¹⁰ yrs.

Calculate the half life of ^{234}U .

Q.2.

- (A) Write brief notes on the following:
 - (i) Scintillation detector. Explain why NaI crystal is doped with TI.
 - (ii) Internal Conversion. [5]
- **(B)** Defining the Q value as $(m_i m_f) c^2$, compute the range of neutrino energies (minimum and maximum) in the solar fusion reaction:

 $p + p \rightarrow d + e^+ + v$.

Assume the initial protons to have negligible kinetic energies. Here m_i = initial masses and m_f = final masses.

symbols: p=proton. d=deuteron. $e^+=positron$, and v=neutrino.

Note: Mass of proton=938.272 MeV, Mass of deuteron =1875.611 MeV Mass of e^+ =0.511 MeV. Mass of neutrino v_e = 0 (negligible).

(C) Describe the significant processes through which the γ -rays primarily interact with matter in the energy range less than 5 MeV. [5]

[5] (D) Describe the nature of nucleon-nucleon force as derived from the of bound state of the deuteron and nucleon-nucleon scattering. at various energies.

List the conservation laws in nuclear forces.

- Q.3. (A) (i) What do you understand by the term "Magic Numbers"? [2]
- (ii) State the basic assumptions made in the single particle shell model. [3]
- (iii) Explain how the spin and parities are determined using the single [4] particle shell model for even-even, odd-even, even-odd and odd-odd nuclei.
- (iv) Determine the spin and parities for the ground state of the following [10] nuclei by shell model considerations.

$${}_{3}^{7}Li$$
 , ${}_{5}^{11}B$, ${}_{6}^{15}C$, ${}_{9}^{17}F$, ${}_{15}^{31}P$

Note: Use the shell model level scheme given in the Appendix.

- (B)(i) Explain why two types of selections rules (the Fermi and GT-selection rules) exist in β -decay.
- (ii) Classify the following decays according to degree of forbiddenness: [4]
 - (a) $^{26}_{13}AI(5^+) \rightarrow ^{26}_{12}Mg^*(2^+)$
 - **(b)** ${}_{17}^{36}CI(2^+) \rightarrow {}_{18}^{36}Ar(0^+)$
- Q.4. Semi-empirical formula for binding energy is given by

$$B(Z,A) = aA - bA^{\frac{2}{3}} - s\frac{(A-2Z)^{2}}{A} - d\frac{Z^{2}}{A^{\frac{2}{3}}} - \delta\frac{1}{A^{\frac{1}{2}}}$$

with a = 15.835 MeV, b = 18.33 MeV, s = 23.20 MeV, d = 0.714 MeV and $\delta = 11.2$ MeV for odd-odd or even -even for odd-even or even-odd.

(i) Use the above formula to derive an expression for Q value for α -particle emission, where

$$Q = B(^{4}He) + B(Z-2,A-4) - B(Z,A)$$
 [15]

- (ii) Use the expression in (i) to find Q-value for for α -emission in $^{226}_{90}Th$. [10]
- Q.5.
 - (A) (i) For the following γ transitions, give all permitted multipoles [5] and indicate which multipole might be most intense in the emitted radiation.
 - (a) $9/2^- \rightarrow 7/2^+$
 - (b) $1/2^{-} \rightarrow 7/2^{-}$
 - (c) $1^{-} \rightarrow 2^{+}$ (d) $4^{+} \rightarrow 2^{+}$

 - (e) $11/2^- \rightarrow 3/2^+$
 - (ii) Explain why transition from 0^+ to 0^+ will not allow any γ -radiation. [2]

(iii) An even-Z,even-N nucleus has the following sequence of levels above its 0^+ ground state:

Draw an energy level diagram and show all reasonably probable γ transitions and their dominant multipole assignments. [10]

(B) Write short notes on:

[8]

- (a) Non-conservation of parity.
- (b) Alpha decay .

@@@END OF EXAMINATION@@@

Appendix

Selection Rules:

(A) β -decay:

Type of Transition		ΔΙ	Parity Change
Allowed	Fermi	0	No
	GT	± 1 or 0 (except $0 \rightarrow 0$)	No
1 st Forbidden	Fermi	± 1.0 (except $0 \rightarrow 0$)	Yes
	GT	$\pm 2, \pm 1, \text{ or } 0$ (except $0 \rightarrow 0$; $1/2 \rightarrow 1/2$; $0 \rightarrow 1$)	Yes
2 nd Forbidde n	Fermi	± 2	No
	GT	± 3	No

(B) γ - decay:

	E1	E2	E3	E4
Δπ	Yes	No	Yes	No
∆J ≤	1	2	3	4
	M1	M2	М3	M4
Δπ	No	Yes	No	Yes
lΔJ∣≤	1	2	3	4

(C) Useful Information

PHYSICAL CONSTANTS AND DERIVED QUANTITIES

Speed of light c = $2.99792458 \times 10^8 \text{ m s}^{-1} \sim 3.00 \times 10^{23} \text{ fm s}^{-1}$ Avogadro's number $N_A = 6.02214199(47) \times 10^{26}$ molecules per kg-mole

Planck's constant
$$h = 6.626068 \ 76(52) \times 10^{-34} \text{ J s}$$

 $\hbar = 1.054571 \ 596(82) \times 10^{-34} \text{ J s} = 0.65821 \times 10^{-21} \text{ MeV s}$
 $\hbar^2 = 41.802 \text{ u MeV fm}^2$
 $\hbar \text{ c} = 197.327 \text{ MeV fm}$

Elementary charge $e = 1.602176462(63) \times 10^{-19} \text{C}$ $e^2/4\pi\varepsilon_0 = 1.4400 \text{MeV fm}$

Fine structure constant $\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c} = 1 / 137.036$

Boltzmann constant $k = 1.3806503(24) \times 10^{-23} \text{ JK}^{-1} = 0.8617 \times 10^{-4} \text{ eV K}^{-1}$

Curie (1 Ci = 3.7×10^{10} dis/sec), is based upon the activity of one gram of radium. Becquerel (Bq = 1 dis/sec)

USEFUL FORMULAE

$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \tau \ln 2$$
 where $t_{\frac{1}{2}} = \text{half life}$, $\lambda = \text{decay constant and } \tau = \text{mean life}$.

Energy width of a state of lifetime τ :

$$\Gamma$$
= 6.58212 x 10⁻²² / τ (s) MeV

Non-relativistic speed of mass m with energy E:

$$\mathbf{v} = 1.389 \times 10^7 [(E(MeV) / m(u))]^{1/2} \text{ ms}^{-1}$$

Non-relativistic wave number of mass m with energy E:

$$k = 2\pi/\lambda = 0.21874 [m(u) \times E(MeV)]^{1/2} \text{ fm}^{-1}$$

Wave number for a photon of energy E:

$$k = 2\pi/\lambda = E / \hbar c = E (\text{MeV}) / 197.327 \text{ fm}^{-1}$$

MASSES AND ENERGIES

Atomic mass unit
$$m_u$$
 or $u = 1.66053873(13) \times 10^{-27} \text{ kg}$
 $m_u c^2 = 931.494 \text{ MeV}$

Electron
$$m_e = 9.10938188(72) \times 10^{-31} \text{ kg}$$

$$m_e/m_u$$
 = 5.486 x 10⁻⁴ = 1/1823
 m_ec^2 = 0.510998902(21) MeV

Proton
$$m_p = 1.67262158(13) \times 10^{-27} \text{ kg}$$

$$m_p / m_u = 1.00727647$$

 $m_p c^2 = 938.272 \text{ MeV}$

Hydrogen atom
$$m_H = 1.673533 \times 10^{-27} \text{ kg}$$

$$m_H / m_u = 1.007825$$

 $m_H c^2 = 938.783 \text{ MeV}$

Neutron
$$m_n = 1.67492716(13) \times 10^{-27} \text{ kg}$$

$$m_n/m_u = 1.00866491578(55)$$

 $m_nc^2 = 939.565 \text{ MeV}$

Alpha particle
$$m_{\alpha} = 6.644656 \times 10^{-27} \text{ kg}$$

$$m_{\alpha}/m_{u} = 4.001506175$$

 $m_{\alpha} c^{2} = 3727.379 \text{ MeV}$

CONVERSION FACTORS

Fermi
$$1 \text{fm} = 10^{-15} \text{ m}$$

 $1 \text{ eV} = 1.6022 \times 10^{-9} \text{ J}$

Million electron volts 1 MeV =
$$1.602176 \times 10^{-13} \text{ J}$$

1 MeV/c² = $1.783 \times 10^{-30} \text{ kg}$
Cross section (barn) 1 b = 10^{-28} m^2

Year
$$1 \text{ y} = 3.1536 \text{ x } 10^7 \text{ s}$$

(D) Single particle shell model Level Scheme:

Following diagram gives the energy levels calculated using a realistic potential with spinorbit interaction according to single particle shell model:

